Skip to main content
Log in

Controlled anisotropic growth of Ag nanoparticles on oil-decorated TiO2 films with photocatalytic reduction method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ag–TiO2 hybrids are useful in various applications, such as photocatalysis, solar energy conversion, and biosensoring. In this study, oil-decorated TiO2 films were used to induce the formation of Ag nanoplates in AgNO3 solution via a photocatalytic method. Ag nanoplates in the products can be controlled by changing the oil-decoration time of films or changing the AgNO3 concentration of the solution. Oil decoration was found to be necessary in the formation of Ag nanoplates, and a critical concentration of AgNO3 solution was needed. The oil layer on the TiO2 films was demonstrated to play a role in the prevention of the reoxidation of the Ag atoms, and a growth model was proposed to interpret the formation of Ag nanoplates on the oil-decorated TiO2 films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  2. X. Chen and S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).

    Article  CAS  Google Scholar 

  3. M. Es-Souni, M. Es-Souni, S. Habouti, N. Pfeiffer, A. Lahmar, M. Dietze, and C-H. Solterbeck: Brookite formation in TiO2-Ag nanocomposites and visible light induced templated growth of Ag nanostructures in TiO2. Adv. Funct. Mater. 20, 377 (2010).

    Article  CAS  Google Scholar 

  4. K. Awazu, M. Fujimaki, C. Rockstuhl, and J. Tominaga: A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676 (2008).

    Article  CAS  Google Scholar 

  5. W. Hou and S.B. Cronin: A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612 (2013).

    Article  CAS  Google Scholar 

  6. Y. Tian and T. Tatsuma: Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632 (2005).

    Article  CAS  Google Scholar 

  7. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S.B. Cronin: Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111 (2011).

    Article  CAS  Google Scholar 

  8. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima: Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat. Mater. 2, 29 (2003).

    Article  CAS  Google Scholar 

  9. I. Tanahashi, H. Iwagishi, and G. Chang: Localized surface plasmon resonance sensing properties of photocatalytically prepared Au/TiO2 films. Mater. Lett. 62, 2714 (2008).

    Article  CAS  Google Scholar 

  10. K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003).

    Article  CAS  Google Scholar 

  11. J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, and S. Schultz: Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755 (2002).

    Article  CAS  Google Scholar 

  12. N. Félidj, J. Aubard, G. Lévi, J. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. Aussenegg: Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Phys. Rev. B 65, 075419 (2002).

    Article  Google Scholar 

  13. R. Jin, Y.C. Cao, E. Hao, G.S. Me, G.C. Schatz, and C.A. Mirkin: Controlling anisotropic nanoparticles growth through plasmon excitation. Science 425, 487 (2004).

    Google Scholar 

  14. K. Matsubara, K.L. Kelly, N. Sakai, and T. Tatsuma: Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals. J. Mater. Chem. 19, 5526 (2009).

    Article  CAS  Google Scholar 

  15. I. Tanabe, K. Matsubara, S.D. Stridge, E. Kazuma, and K.L. Kelly: Photocatalytic growth and plasmon resonance-assisted photoelectrochemical toppling of upright Ag nanoplates on a nanoparticulate TiO2 film. Chem. Commun. 24, 3621 (2009).

    Article  Google Scholar 

  16. E. Kazuma, K. Matsubara, K.L. Kelly, N. Sakai, and T. Tatsuma: Bi- and uniaxially oriented growth and plasmon resonance properties of anisotropic Ag nanoparticles on single crystalline TiO2 surfaces. J. Phys. Chem. C 113, 4758 (2009).

    Article  CAS  Google Scholar 

  17. D.W. Li, L.J. Pan, S. Li, K. Liu, S.F. Wu, and W. Peng: Controlled preparation of uniform TiO2-catalyzed silver nanoparticle films for surface-enhanced Raman scattering. J. Phys. Chem. C 117, 6861 (2013).

    Article  CAS  Google Scholar 

  18. R. Viswanatha, P.K. Santra, C. Dasgupta, and D.D. Sarma: Growth mechanism of nanocrystals in solution: ZnO, a case study. Phys. Rev. Lett. 98, 255501 (2007).

    Article  Google Scholar 

  19. A. Mills, G. Hill, M. Stewart, D. Graham, W.E. Smith, S. Hodgen, P.J. Halfpenny, K. Faulds, and P. Robertson: Characterization of novel Ag on TiO2 films for surface-enhanced Raman scattering. Appl. Spectrosc. 58, 922 (2004).

    Article  CAS  Google Scholar 

  20. I.M. Arabatzis, T. Stergiopoulos, M.C. Bernard, D. Labou, S.G. Neophytides, and P. Falaras: Silver-modified titanium dioxide thinfilms for efficient photodegradation of methyl orange. Appl. Catal., B 42, 187 (2003).

    Article  CAS  Google Scholar 

  21. M.H. Ahmed, T.E. Keyes, J.A. Byrne, C.W. Blackledge, and J.W. Hamilton: Adsorption and photocatalytic degradation of human serum albumin on TiO2 and Ag–TiO2 films. J. Photochem. Photobiol., A 222, 123 (2011).

    Article  CAS  Google Scholar 

  22. L. Yang, X. Jiang, W. Ruan, J. Yang, B. Zhao, W. Xu, and J.R. Lombardi: Charge transfer induced surface-enhanced Raman scattering on Ag TiO2 nanocomposites. J. Phys. Chem. C 113, 16226 (2009).

    Article  CAS  Google Scholar 

  23. L.M. Sudnik, K.L. Norrod, and K.L. Rowlen: SERS-active Ag films from photoreduction of Ag+ on TiO2. Appl. Spectrosc. 50, 422 (1996).

    Article  CAS  Google Scholar 

  24. Y. Sakai, I. Tanabe, and T. Tatsuma: Orientation-selective removal of upright Ag nanoplates from a TiO2 film. Nanoscale 3, 4101 (2011).

    Article  CAS  Google Scholar 

  25. I. Tanabe, K. Matsubara, N. Sakai, and T. Tatsuma: Photoelectrochemical and optical behavior of single upright Ag nanoplates on a TiO2 film. J. Phys. Chem. C 115, 1695 (2011).

    Article  CAS  Google Scholar 

  26. A. Moores and F. Goettmann: The plasmon band in noble metal nanoparticles: An introduction to theory and applications. New J. Chem. 30, 1121 (2006).

    Article  CAS  Google Scholar 

  27. T. Ung, L.M. Liz-Marza, and P. Mulvaney: Optical properties of thin films of Au@SiO2 particles. J. Phys. Chem. B 105, 3441 (2001).

    Article  CAS  Google Scholar 

  28. M. Ohring: Materials Science of Thin Films: Deposition and Structure (Academic Press, San Diego, USA, 2002).

    Google Scholar 

  29. M. Niederberger and H. Cölfen: Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 8, 3271 (2006).

    Article  CAS  Google Scholar 

  30. J. Zhang, F. Huang, and Z. Lin: Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2, 18 (2010).

    Article  Google Scholar 

  31. S. Yin, F. Huang, J. Zhang, J. Zheng, and Z. Lin: The effects of particle concentration and surface charge on the oriented attachment growth kinetics of CdTe nanocrystals in H2O. J. Phys. Chem. C 115, 10357 (2011).

    Article  CAS  Google Scholar 

  32. D.S. Li, M.H. Nielsen, J.R.I. Lee, C. Frandsen, J.F. Banfield, and J.J. De Yoreo: Direction-specific interactions control crystal growth by oriented attachment. Science 36, 1014 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Tao, Q., Li, D. et al. Controlled anisotropic growth of Ag nanoparticles on oil-decorated TiO2 films with photocatalytic reduction method. Journal of Materials Research 29, 2497–2504 (2014). https://doi.org/10.1557/jmr.2014.283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.283

Navigation