Skip to main content
Log in

The influence of Nb on hot corrosion behavior of Ni-based superalloy at 800 °C in a mixture of Na2SO4–NaCl

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

New-type Ni-based superalloys with and without Nb were designed in this study. Their hot corrosion behaviors were investigated at 800 °C with the deposition of a mixture of Na2SO4 and NaCl. The corrosion kinetics was studied by thermogravimetry. Microstructure of the corrosion scales was studied by SEM and the phase constituent was analyzed by XRD. Results showed that the corrosion kinetics followed approximately parabolic law. The corrosion scales on the two Ni-based alloys were comprised of Cr2O3, Al2O3, TiO2, and NiCr2O4. NiO was only detected in the scale on alloy without Nb. Nb2O5 appeared with the addition of 2.0 wt% Nb. No sulfide emerged in the scales. The corrosion scales both exhibited a layered structure. With Nb addition, the hot corrosion resistance of the alloy was notably improved. The action mechanism of Nb was investigated extensively in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. A. Yeh, A. Sato, T. Kobayashi, and H. Harada: On the creep and phase stability of advanced Ni-base single crystal superalloys. Mater. Sci. Eng., A 490, 445 (2008).

    Google Scholar 

  2. P. Caron and T. Khan: Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp. Sci. Technol. 3, 513 (1999).

    Google Scholar 

  3. E.O. Ezugwu: Key improvements in the machining of difficult-to-cut aerospace superalloys. Int. J. Mach. Tool Manuf. 45, 1353 (2005).

    Google Scholar 

  4. P.S. Sidky and M.G. Hocking: The hot corrosion of Ni-based ternary alloys and superalloys for application in gas turbines employing residual fuels. Corros. Sci. 27, 499 (1987).

    CAS  Google Scholar 

  5. T.S. Sidhu, R.D. Agrawal, and S. Prakash: Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings — A review. Surf. Coat. Technol. 198, 441 (2005).

    CAS  Google Scholar 

  6. G.H. Meier: A review of advances in high-temperature corrosion. Mater. Sci. Eng., A 120, 1 (1989).

    Google Scholar 

  7. A. Suzuki, F. Wu, H. Murakami, and H. Imai: High temperature characteristics of Ir-Ta coated and aluminized Ni-base single crystal superalloys. Sci. Technol. Adv. Mater. 5, 555 (2004).

    CAS  Google Scholar 

  8. J. Wang, L. Zhou, L. Sheng, and J. Guo: The microstructure evolution and its effect on the mechanical properties of a hot-corrosion resistant Ni-based superalloy during long-term thermal exposure. Mater. Des. 39, 55 (2012).

    Google Scholar 

  9. J.A. Goebel, F.S. Pettit, and G.W. Goward: Mechanisms for the hot corrosion of nickel-base alloys. Metall. Trans. 4, 261 (1973).

    CAS  Google Scholar 

  10. J. Lu, S. Zhu, and F. Wang: High temperature corrosion behavior of an AIP NiCoCrAlY coating modified by aluminizing. Surf. Coat. Technol. 205, 5053 (2011).

    CAS  Google Scholar 

  11. S.M. Jiang, X. Peng, Z.B. Bao, S.C. Liu, Q.M. Wang, J. Gong, and C. Sun: Preparation and hot corrosion behaviour of a MCrAlY + AlSiY composite coating. Corros. Sci. 50, 3213 (2008).

    CAS  Google Scholar 

  12. D.J. Wortman, R.E. Fryxell, K.L. Luthra, and P.A. Bergman: Mechanism of low temperature hot corrosion: Burner rig studies. Thin Solid Films 64, 281 (1979).

    CAS  Google Scholar 

  13. F. Gesmundo and F. Viani: The mechanism of the low-temperature hot corrosion of pure iron and manganese at 600-800 °C. Mater. Chem. Phys. 20, 513 (1988).

    CAS  Google Scholar 

  14. F. Iacoviello, M. Boniardi, and G.M. La Vecchia: Fatigue crack propagation in austeno-ferritic duplex stainless steel 22Cr5Ni. Int. J. Fatigue 21, 957 (1999).

    CAS  Google Scholar 

  15. F. Pedraza, M. Reffass, J. Balmain, G. Bonnet, and J.F. Dinhut: High-temperature oxidation behavior of low-energy high-flux nitrided Ni and Ni-20% Cr substrates. Mater. Sci. Eng., A 357, 355 (2003).

    Google Scholar 

  16. M.G. Hocking and V. Vasantasree: Hot corrosion of Ni–Cr alloys in SO2/O2 atmospheres-II. Visual observations, analyses and mechanisms. Corros. Sci. 16, 279 (1976).

    CAS  Google Scholar 

  17. V. Vasantasree and M.G. Hocking: Hot corrosion of Ni-Cr alloys in SO2+O2 atmospheres-I. Corrosion kinetics. Corros. Sci. 16, 261 (1976).

    CAS  Google Scholar 

  18. K. Kusabiraki and X.P. Guo: Hot corrosion of the Ni-20%Cr alloy and waspaloy immersed in Na2SO4. Tetsu to Hagane 93, 498 (2007).

    CAS  Google Scholar 

  19. X.M. Ou, Z. Sun, M. Sun, and D.L. Zou: Hot-corrosion mechanism of Ni-Cr coatings at 650 °C under different simulated corrosion conditions. J. China Univ. Min. Technol. 18, 444 (2008).

    CAS  Google Scholar 

  20. X.D. Lu, S.G. Tian, L. Shui, and X.F. Yu: Hot corrosion behaviors of Ni-14%Cr alloys in molten sulfate. Rare Met. Mater. Eng. 38, 17 (2009).

    CAS  Google Scholar 

  21. R.A. Mahesh, R. Jayaganthan, and S. Prakash: Oxidation behavior of HVOF sprayed Ni-5Al coatings deposited on Ni- and Fe-based superalloys under cyclic condition. Mater. Sci. Eng., A 475, 327 (2008).

    Google Scholar 

  22. X.X. Ma, Y.D. He, D.R. Wang, and J. Zhang: Superior high-temperature oxidation resistance of a novel (Al2O3-Y2O3)/Pt laminated coating. Appl. Surf. Sci. 258, 4733 (2012).

    CAS  Google Scholar 

  23. Y. Niu, X.J. Zhang, Y. Wu, and F. Gesmundo: The third-element effect in the oxidation of Ni-xCr-7Al (x=0, 5, 10, 15 at.%) alloys in 1 atm O2 at 900-1000 °C. Corros. Sci. 48, 4020 (2006).

    CAS  Google Scholar 

  24. T.N. Rhys-Jones and N. Swindells: The high temperature corrosion of a commercial aluminide coating on IN738-LC and MarMOO2 at 700 °C and 830 °C. Corros. Sci. 25, 559 (1985).

    CAS  Google Scholar 

  25. R.A. Mahesh, R. Jayaganthan, and S. Prakash: A study on hot corrosion behaviour of Ni-5Al coatings on Ni- and Fe-based superalloys in an aggressive environment at 900 °C. J. Alloy. Compd. 460, 220 (2008).

    CAS  Google Scholar 

  26. M. Hara, H. Okumura, T. Nakagawa, Y. Sato, and Y. Shinata: Effect of pre-oxidation on hot corrosion of Ni-Cr-Al alloy in molten Na2SO4-NaCl. J. Jpn. Inst. Met. 59, 1259 (1995).

    CAS  Google Scholar 

  27. X. Yang, X. Peng, and F. Wang: Hot corrosion of a novel electrodeposited Ni-6Cr-7Al nanocomposite under molten (0.9Na, 0.1K)2SO4 at 900 °C. Scr. Mater. 56, 891 (2007).

    CAS  Google Scholar 

  28. Y. Takizawa and K. Sugahara: Corrosion-resistant Ni-Cr-Mo alloys in hot concentrated sulphuric acid with active carbon. Mater. Sci. Eng., A 198, 145 (1995).

    Google Scholar 

  29. S. Badwe, K.S. Raja, and M. Misra: A study of corrosion behavior of Ni-22Cr-13Mo-3W alloy under hygroscopic salt deposits on hot surface. Electrochim. Acta 51, 5836 (2006).

    CAS  Google Scholar 

  30. T.E. Strangman, E.J. Felten, and N.E. Ulion: High temperature oxidation resistant coatings for the directionally solidified Ni-Nb-Cr-Al eutectic superalloy. Am. Ceram. Soc. Bull. 56, 700 (1977).

    CAS  Google Scholar 

  31. P. Elliott and A.F. Hampton: The influence of ternary additions of W, Mo, Ti, Ta, and Nb on the isothermal and cyclic oxidation of Ni-10Cr alloy. Oxid. Met. 14, 449 (1980).

    CAS  Google Scholar 

  32. K.J. Zeng, Z.P. Jin, and P.Y. Huang: The effect of Nb on the hot corrosion behaviour of Ni-base superalloy. Z. Metallkd. 80, 129 (1989).

    CAS  Google Scholar 

  33. J. Xu, X.Q. Zhao, and S.K. Gong: The influence of Nb diffusion on the oxidation behavior of TiNiAlNb alloys with different Ti/Ni ratio. Mater. Sci. Eng., A 458, 381 (2007).

    Google Scholar 

  34. P. Pérez, V.A.C. Haanappel, and M.F. Stroosnijder: The effect of niobium on the oxidation behaviour of titanium in N2/20% O2 atmospheres. Mater. Sci. Eng. A 284, 126 (2000).

    Google Scholar 

  35. Y.G. Zhang, X.Y. Li, C.Q. Chen, W. Wang, and V. Ji: The influence of Nb ion implantation upon oxidation behavior and hardness of a Ti-48 at.% Al alloy. Surf. Coat. Technol. 100, 214 (1998).

    Google Scholar 

  36. M.D.P. Moricca and S.K. Varma: Isothermal oxidation behaviour of Nb-W-Cr alloys. Corros. Sci. 52, 2964 (2010).

    CAS  Google Scholar 

  37. W.J. Li, Y. Liu, Y. Wang, C. Han, and H.P. Tang: Hot corrosion behavior of Ni-16Cr-xAl based alloys in mixture of Na2SO4-NaCl at 600 °C. Trans. Nonferrous Met. Soc. China 21, 2617 (2011).

    CAS  Google Scholar 

  38. J.B. Johnson, J.R. Nicholls, R.C. Hurst, and P. Hancock: The mechanical properties of surface scales on nickel-base superalloys-II. Contaminant corrosion. Corros. Sci. 18, 543 (1978).

    CAS  Google Scholar 

  39. Z.L. Tang, F.H. Wang, and W.T. Wu: Effect of a sputtered TiAlCr coating on the oxidation resistance of TiAl intermetallic compound. Oxid. Met. 48, 511 (1997).

    CAS  Google Scholar 

  40. D.W. Mckee, D.A. Shores, and K.L. Luthra: The effect of SO2 and NaCl on high temperature hot corrosion. J. Electrochem. Soc. 125, 411 (1978).

    CAS  Google Scholar 

  41. B. Kantor, C. Mason, N. D’Souza, H.B. Dong, and N.R. Green: Influence of Al and Nb on castability of a Ni-base superalloy, IN713LC. Int. J. Cast Met. Res. 22, 62 (2009).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was financially supported by the Department of Science and Technology of Shandong Province (Grant No. 2007GG10003002), P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huijun Yu or Chuanzhong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, F., Yu, H., Wan, K. et al. The influence of Nb on hot corrosion behavior of Ni-based superalloy at 800 °C in a mixture of Na2SO4–NaCl. Journal of Materials Research 29, 2596–2603 (2014). https://doi.org/10.1557/jmr.2014.282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.282

Navigation