Skip to main content

Advertisement

Log in

Selective synthesis and shape-dependent microwave electromagnetic properties of polymorphous ZnO complex architectures

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A simple one-pot hydrothermal approach that allowed the selective synthesis of complex ZnO architectures with varying configurations without using any surfactants and/or solid templates is proposed in this paper. The ZnO configurations include spherical aggregates, nanosheet-based flowers, microrod-composed flowers, and nanopetal-built flowers. Kinetic factors (i.e., the base type and base/Zn2+ molar ratio) can be easily utilized to control the oriented attachment and growth of [Zn(OH)]2− on the (001) polar planes, thereby regulating the morphology of ZnO architectures. The ZnO architectures were characterized by scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, x-ray diffraction, and specific surface area. The relationships between the structures and microwave electromagnetic properties were established. Enhanced dielectric and absorption properties were exhibited by ZnO flowers composed of large-aspect-ratio microrods. Such properties could be attributed to the improved microcurrent attenuation and interface scattering rather than the dielectric relaxation and microantenna radiation. This study provides a guide for creating and synthesizing highly efficient microwave absorbing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. G.X. Tong, J.G. Guan, Z.D. Xiao, F.Z. Mou, W. Wang, and G.Q. Yan: In situ generated H2 bubble-engaged assembly: A one-step approach for shape-controlled growth of Fe nanostructures. Chem. Mater. 20, 3535–3539 (2008).

    Article  CAS  Google Scholar 

  2. G.X. Tong, Q. Hu, W.H. Wu, W. Li, H.S. Qian, and Y. Liang: Submicrometer-sized NiO octahedra: Facile one-pot solid synthesis, formation mechanism, and chemical conversion into Ni octahedra with excellent microwave-absorbing properties. J. Mater. Chem. 22, 17494–17504 (2012).

    Article  CAS  Google Scholar 

  3. X.A. Fan, J.G. Guan, Z.Z. Li, F.Z. Mou, G.X. Tong, and W. Wang: One-pot low temperature solution synthesis, magnetic and microwave electromagnetic properties of single-crystal iron submicron cubes. J. Mater. Chem. 20, 1676–1682 (2010).

    Article  CAS  Google Scholar 

  4. G-X. Tong, W-H. Wu, Q. Hu, J-H. Yuan, and H-S. Qian: Enhanced electromagnetic characteristics of porous iron particles made by a facile corrosion technique. Mater. Chem. Phys. 132, 563–569 (2012).

    Article  CAS  Google Scholar 

  5. G.X. Tong, W.H. Wu, R. Qiao, J.H. Yuan, J.G. Guan, and H.S. Qian: Morphology dependence of static magnetic and microwave electromagnetic characteristics of polymorphic Fe3O4 nanomaterials. J. Mater. Res. 26, 1639–1645 (2011).

    Article  CAS  Google Scholar 

  6. Q. Hu, G.X. Tong, W.H. Wu, F.T. Liu, H.S. Qian, J.G. Guan, and D.Y. Hong: Selective preparation and novel microwave electromagnetic characteristics of polymorphous ZnO architectures made from a facile one-step ethanediamine (en)-assisted hydrothermal approach. CrystEngComm 15, 1314–1323 (2013).

    Article  CAS  Google Scholar 

  7. G-X. Tong, F-F. Du, Y. Liang, Q. Hu, R-N. Wu, J-G. Guan, and X. Hu: Polymorphous ZnO complex architectures: Selective synthesis, mechanism, surface area- and Zn-polar plane-codetermining antibacterial activity. J. Mater. Chem. B 1, 454–463 (2013).

    Article  CAS  Google Scholar 

  8. Y.X. Huang, Q.X. Cao, Z.M. Li, H.Q. Jiang, Y.P. Wang, and G.F. Li: Effect of synthesis atmosphere on the microwave dielectric properties of ZnO powders. J. Am. Ceram. Soc. 92, 2129–2131 (2009).

    Article  CAS  Google Scholar 

  9. R.F. Zhuo, H.T. Feng, Q. Liang, J.Z. Liu, J.T. Chen, D. Yan, J.J. Feng, H.J. Li, S. Cheng, B.S. Geng, X.Y. Xu, J. Wang, Z.G. Wu, P.X. Yan, and G.H. Yue: Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of ZnO nanocombs. J. Phys. D: Appl. Phys. 41, 185405 (2008).

    Article  Google Scholar 

  10. J. Yuan, W-L. Song, X-Y. Fang, X-L. Shi, Z-L. Hou, and M-S. Cao: Tetra-needle zinc oxide/silica composites: High-temperature dielectric properties at X-band. Solid State Commun. 154, 64 (2013).

    Article  CAS  Google Scholar 

  11. R.F. Zhuo, H.T. Feng, J.T. Chen, D. Yan, J.J. Feng, H.J. Li, B.S. Geng, S. Cheng, X.Y. Xu, and P.X. Yan: Multistep synthesis, growth mechanism, optical, and microwave absorption properties of ZnO dendritic nanostructures. J. Phys. Chem. C 112, 11767–11775 (2008).

    Article  CAS  Google Scholar 

  12. Y.J. Chen, M.S. Cao, T.H. Wang, and Q. Wan: Microwave absorption properties of the ZnO nanowire-polyester composites. Appl. Phys. Lett. 84, 3367–3369 (2004).

    Article  CAS  Google Scholar 

  13. H.F. Li, Y.H. Huang, G.B. Sun, X.Q. Yan, Y. Yang, J. Wang, and Y. Zhang: Directed growth and microwave absorption property of crossed ZnO netlike micro-/nanostructures. J. Phys. Chem. C 114, 10088–10091 (2010).

    Article  CAS  Google Scholar 

  14. M-S. Cao, X-L. Shi, X-Y. Fang, H-B. Jin, Z-L. Hou, Z. Wei, and Y-J. Chen: Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Appl. Phys. Lett. 91, 203110 (2007).

    Article  Google Scholar 

  15. Z.Q. Li, Y.J. Xiong, and Y. Xie: Selective growth of ZnO nanostructures with coordination polymers. Nanotechnology 16, 2303 (2005).

    Article  CAS  Google Scholar 

  16. G.X. Tong, J.G. Guan, and Q.J. Zhang: Goethite hierarchical nanostructures: Glucose-assisted synthesis, chemical conversion into hematite with excellent photocatalytic properties. Mater. Chem. Phys. 127, 371–378 (2011).

    Article  CAS  Google Scholar 

  17. A. Mclaren, T. Valdes-Solis, G.Q. Li, and S.C. Tsang: Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131, 12540–12541 (2009).

    Article  CAS  Google Scholar 

  18. G.X. Tong, W.H. Wu, Q. Hua, Y.Q. Miao, J.G. Guan, and H.S. Qian: Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2–18GHz ranges. J. Alloys Compd. 509, 451–456 (2011).

    Article  CAS  Google Scholar 

  19. X-Y. Fang, M-S. Cao, X-L. Shi, Z-L. Hou, W-L. Song, and J. Yuan: Microwave responses and general model of nanotetraneedle ZnO: Integration of interface scattering, microcurrent, dielectric relaxation, and microantenna. J. Appl. Phys. 107, 054304 (2010).

    Article  Google Scholar 

  20. G.X. Tong, J. Ma, W.H. Wu, Q. Hua, R. Qiao, and H.S. Qian: Grinding speed dependence of microstructure, conductivity, and microwave electromagnetic and absorbing characteristics of the flaked Fe particles. J. Mater. Res. 26, 682–688 (2011).

    Article  CAS  Google Scholar 

  21. R.F. Zhuo, L. Qiao, H.T. Feng, J.T. Chen, D. Yan, Z.G. Wu, and P.X. Yan: Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees. J. Appl. Phys. 104, 094101 (2008).

    Article  Google Scholar 

  22. A.N. Langarkov and A.K. Sarychev: Electromagnetic properties of composites containing elongated conducting inclusions. Phys. Rev. B 53, 6318 (1996).

    Article  Google Scholar 

  23. P.C.P. Watts, W.K. Hsu, A. Barnet, and B. Chambers: High permittivity from defective multiwalled carbon nanotubes in the X-band. Adv. Mater. 15, 600–603 (2003).

    Article  CAS  Google Scholar 

  24. R.C. Che, L-M. Peng, X.F. Duan, Q. Chen, and X.L. Liang: Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004).

    Article  CAS  Google Scholar 

  25. X.L. Shi, M.S. Cao, J. Yuan, and X.Y. Fang: Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 95, 163108 (2009).

    Article  Google Scholar 

  26. G.X. Tong, W.H. Wu, J.G. Guan, H.S. Qian, J.H. Yuan, and W. Li: Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: Electromagnetic properties. J. Alloys Compd. 509, 4320–4326 (2011).

    Article  CAS  Google Scholar 

  27. G.X. Tong, J.H. Yuan, W.H. Wu, Q. Hu, H.S. Qian, L.C. Li, and J.P. Shen: Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics. CrystEngComm 14, 2071–2079 (2012).

    Article  CAS  Google Scholar 

  28. W.L. Song, M.S. Cao, B. Wen, Z.L. Hou, J. Cheng, and J. Yuan: Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: Dielectric properties, electromagnetic interference shielding and microwave absorption. Mater. Res. Bull. 47, 1747–1754 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Natural Scientific Foundation of China (51102215), Chinese Scholarship Council (201208330114), Natural Scientific Foundation of Zhejiang Province (Y4100022), Teacher Training Project of Zhejiang Normal University (KYJ06Y12134), and National Innovation and Entrepreneurship Training Program of Undergraduates (201310345016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxiu Tong or Jianqing Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, F., Tong, G., Tong, C. et al. Selective synthesis and shape-dependent microwave electromagnetic properties of polymorphous ZnO complex architectures. Journal of Materials Research 29, 649–656 (2014). https://doi.org/10.1557/jmr.2014.27

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.27

Navigation