Abstract
The paradox of strength and ductility is now well established and denotes the difficulty of simultaneously achieving both high strength and high ductility. This paradox was critically examined using a cast Al–7%Si alloy processed by high-pressure torsion (HPT) for up to 10 turns at a temperature of either 298 or 445 K. This processing reduces the grain size to a minimum of ∼0.4 µm and also decreases the average size of the Si particles. The results show that samples processed to high numbers of HPT turns exhibit both high strength and high ductility when tested at relatively low strain rates and the strain rate sensitivity under these conditions is ∼0.14 which suggests that flow occurs by some limited grain boundary sliding and crystallographic slip. The results are also displayed on the traditional diagram for strength and ductility and they demonstrate the potential for achieving high strength and high ductility by increasing the number of turns in HPT.
Similar content being viewed by others
References
R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).
T.G. Langdon: Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 61, 7035 (2013).
R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4), 33 (2006).
R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).
A.P. Zhilyaev and T.G. Langdon: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893 (2008).
A.P. Zhilyaev, S. Lee, G.V. Nurislamova, R.Z. Valiev, and T.G. Langdon: Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scr. Mater. 44, 2753 (2001).
A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baró, J.A. Szpunar, and T.G. Langdon: Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater. 51, 753 (2003).
J. Wongsa-Ngam, M. Kawasaki, and T.G. Langdon: A comparison of microstructures and mechanical properties in a Cu-Zr alloy processed using different SPD techniques. J. Mater. Sci. 48, 4653 (2013).
E.O. Hall: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. 64B, 747 (1951).
N.J. Petch: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).
R. Valiev: Materials science — Nanomaterial advantage. Nature 419, 887 (2002).
R. Valiev: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).
D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev: Deformation behavior and plastic instabilities of ultrafine-grained titanium. Appl. Phys. Lett. 79, 611 (2001).
Y.M. Wang and E. Ma: Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng., A 375–377, 46 (2004).
C.C. Koch, D.G. Morris, K. Lu, and A. Inoue: Ductility of nanostructured materials. MRS Bull. 24(2), 54 (1999).
Y.M. Wang and E. Ma: Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52, 1699 (2004).
E. Ma: Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58(4), 49 (2006).
Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia: Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density. Appl. Phys. Lett. 92, 081903 (2008).
Y. Zhao, Y. Zhu, and E.J. Lavernia: Strategies for improving tensile ductility of bulk nanostructured materials. Adv. Eng. Mater. 12, 769 (2010).
Z. Horita, K. Ohashi, T. Fujita, K. Kaneko, and T.G. Langdon: Achieving high strength and high ductility in precipitation-hardened alloys. Adv. Mater. 17, 1599 (2005).
Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu: Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18, 2280 (2006).
Y.H. Zhao, J.E. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T.T. Zhu: Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv. Mater. 18, 2949 (2006).
Y.H. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y.T. Zhu, Y. Zhou, and E.J. Lavernia: High tensile ductility and strength in bulk nanostructured nickel. Adv. Mater. 20, 3033 (2008).
H.W. Höppel, Z. Zhou, H. Mughrabi, and R.Z. Valiev: Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. 82A, 1781 (2002).
A. Vinogradov and S. Hashimoto: Fatigue of severely deformed metals. Adv. Eng. Mater. 5, 351 (2003).
H.W. Höppel, M. Kautz, C. Xu, M. Murashkin, T.G. Langdon, R.Z. Valiev, and H. Mughrabi: An overview: Fatigue behaviour of ultrafine-grained metals and alloys. Int. J. Fatigue 28, 1001 (2006).
R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5 (2002).
F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, and E.V. Pereloma: Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes. Acta Mater. 52, 4819 (2004).
P. Kumar, C. Xu, and T.G. Langdon: Influence of strain rate on strength and ductility in an aluminum alloy processed by equal-channel angular pressing. J. Mater. Sci. 44, 3913 (2009).
J.G. Kaufman and E.L. Roy: Aluminum Casting Alloys. Properties, Processes and Applications (American Foundry Society, ASM International, Materials Park, OH, 2004).
M.F. Hafiz and T. Kobayashi: Tensile properties influencing variables in eutectic Al-Si casting alloys. Scr. Metall. Mater. 31, 701 (1994).
M.F. Hafiz and T. Kobayashi: Fracture toughness of eutectic Al-Si casting alloy with different microstructural features. J. Mater. Sci. 31, 6195 (1996).
J.M. García-Infanta, S. Swaminathan, A.P. Zhilyaev, F. Carreño, O.A. Ruano, and T.R. McNelley: Microstructural development during equal channel angular pressing of hypo-eutectic Al-Si casting alloy by different processing routes. Mater. Sci. Eng., A 485, 160 (2008).
J.M. García-Infanta, A.P. Zhilyaev, F. Carreño, O.A. Ruano, J.Q. Su, S.K. Menon, and T.R. McNelley: Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al-Si alloy. J. Mater. Sci. 45, 4613 (2010).
A.P. Zhilyaev, J.M. García-Infanta, F. Carreño, T.G. Langdon, and O.A. Ruano: Particle and grain growth in an Al-Si alloy during high-pressure torsion. Scr. Mater. 57, 763 (2007).
V. Rajinikanth, K. Venkateswarlu, M.K. Sen, M. Das, S.N. Alhajeri, and T.G. Langdon: Influence of scandium on an Al-2% Si alloy processed by high-pressure torsion. Mater. Sci. Eng., A 528, 1702 (2011).
K. Venkateswarlu, V. Rajinikanth, S.N. Alhajeri, and T.G. Langdon: Application of high-pressure torsion to Al-Si alloys with and without scandium additions. Mater. Sci. Forum 667–669, 743 (2011).
T. Mungole, N. Nadammal, K. Dawra, P. Kumar, M. Kawasaki, and T.G. Langdon: Evolution of microhardness and microstructure in a cast Al–7% Si alloy during high-pressure torsion. J. Mater. Sci. 48, 4671 (2013).
R.B. Figueiredo, P.R. Cetlin, and T.G. Langdon: Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater. Sci. Eng., A 528, 8198 (2011).
R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin, and T.G. Langdon: Using finite element modelling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater. 60, 3190 (2012).
M. Kawasaki and T.G. Langdon: The significance of strain reversals during processing by high-pressure torsion. Mater. Sci. Eng., A 498, 341 (2008).
R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch, and B. Baudelet: Structure and deformation behaviour of armco iron subjected to severe plastic deformation. Acta Mater. 44, 4705 (1996).
F. Wetscher, A. Vorhauer, R. Stock, and R. Pippan: Structural refinement of low alloyed steels during severe plastic deformation. Mater. Sci. Eng., A 387–389, 809 (2004).
F. Wetscher, R. Pippan, S. Sturm, F. Kauffmann, C. Scheu, and G. Dehm: TEM investigations of the structural evolution in a pearlitic steel deformed by high-pressure torsion. Metall. Mater. Trans. A 37, 1963 (2006).
Y. Estrin, A. Molotnikov, C.H.J. Davies, and R. Lapovok: Strain gradient plasticity modelling of high-pressure torsion. J. Mech. Phys. Solids 56, 1186 (2008).
A. Loucif, R.B. Figueiredo, M. Kawasaki, T. Baudin, F. Brisset, R. Chemam, and T.G. Langdon: Effect of aging on microstructural development in an Al–Mg–Si alloy processed by high-pressure torsion. J. Mater. Sci. 47, 7815 (2012).
Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia: Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scr. Mater. 59, 627 (2008).
Y.H. Zhao, Y.Z. Guo, Q. Wei, T.D. Topping, A.M. Dangelewicz, Y.T. Zhu, T.G. Langdon, and E.J. Lavernia: Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves. Mater. Sci. Eng., A 525, 68 (2009).
P. Eaton and P. West: Atomic Force Microscopy (Oxford University Press, New York, NY, 2010).
T.G. Langdon: An evaluation of the strain contributed by grain boundary sliding in superplasticity. Mater. Sci. Eng., A 174A, 225 (1994).
T.G. Langdon: Seventy-five years of superplasticity: Historic developments and new opportunities. J. Mater. Sci. 44, 5998 (2009).
R.C. Gifkins and T.G. Langdon: On the question of low-temperature sliding at grain boundaries. J. Inst. Met. 93, 347 (1965).
T.G. Langdon: Grain boundary sliding revisited: Developments in sliding over four decades. J. Mater. Sci. 41, 597 (2006).
H. Van Swygenhoven and A. Caro: Plastic behavior of nanophase Ni: A molecular dynamics computer simulation. Appl. Phys. Lett. 71, 1652 (1997).
J. Schiøtz, F.D. Di Tolla, and K.W. Jacobsen: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).
H. Van Swygenhoven, M. Spaczer, A. Caro, and D. Farkas: Competing plastic deformation mechanisms in nanophase metals. Phys. Rev. B 60, 22 (1999).
H. Van Swygenhoven and P.M. Derlet: Grain-boundary sliding in nanocrystalline FCC metals. Phys. Rev. B 64, 224105 (2001).
K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).
R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, and B. Baudelet: Deformation-behavior of ultra-fine-grained copper. Acta Metall. Mater. 42, 2467 (1994).
N.Q. Chinh, G. Vörös, P. Szommer, Z. Horita, and T.G. Langdon: Grain boundary sliding as a significant mechanism of low temperature plastic deformation in ECAP aluminum. Mater. Sci. Forum 503–504, 1001 (2006).
N.Q. Chinh, P. Szommer, Z. Horita, and T.G. Langdon: Experimental evidence for grain boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation. Adv. Mater. 18, 34 (2006).
R.Z. Valiev, M. Yu Murashkin, A. Kilmametov, B. Straumal, N.Q. Chinh, and T.G. Langdon: Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy. J. Mater. Sci. 45, 4718 (2010).
N.Q. Chinh, T. Csanádi, J. Gubicza, R.Z. Valiev, B.B. Straumal, and T.G. Langdon: The effect of grain boundary sliding and strain rate sensitivity on the ductility of ultrafine-grained materials. Mater. Sci. Forum 667–669, 677 (2011).
N.Q. Chinh, T. Györi, R.Z. Valiev, P. Szommer, G. Varga, K. Havancsák, and T.G. Langdon: Observations of unique plastic behavior in micro-pillars of an ultrafine-grained alloy. MRS Commun. 2, 75 (2012).
A.V. Polyakov, I.P. Semenova, R.Z. Valiev, Y. Huang, and T.G. Langdon: Influence of annealing on ductility of ultrafine-grained titanium processed by ECAP-conform and drawing. MRS Commun. 3, 249 (2013).
R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov: Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng., A 168, 141 (1993).
Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J. Mater. Res. 11, 1880 (1996).
Z. Horita, D.J. Smith, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Observations of grain boundary structure in submicrometer-grained Cu and Ni using high-resolution electron microscopy. J. Mater. Res. 13, 446 (1998).
M. Kawasaki, Z. Horita, and T.G. Langdon: Microstructural evolution in high purity aluminum processed by ECAP. Mater. Sci. Eng., A 524, 143 (2009).
C. Xu, Z. Horita, and T.G. Langdon: Microstructural evolution in an aluminum solid solution alloy processed by ECAP. Mater. Sci. Eng., A 528, 6059 (2011).
A. Loucif, T. Baudin, R.B. Figueiredo, F. Brisset, A.L. Helbert, R. Chemam, and T.G. Langdon: Microstructure and microtexture evolution with aging treatment in an Al-Mg-Si alloy severely deformed by HPT. J. Mater. Sci. 48, 4573 (2013).
T.G. Langdon: A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 42, 2437 (1994).
Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).
D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia: Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scr. Mater. 49, 297 (2003).
B.Q. Han, F.A. Mohamed, C.C. Bampton, and E.J. Lavernia: Improvement of toughness and ductility of a cryomilled Al-Mg alloy via microstructural modification. Metall. Mater. Trans. A 36, 2081 (2005).
K. Yang, H-J. Fecht, and Y. Ivanisenko: First direct in situ observation of grain boundary sliding in ultrafine grained noble metal. Adv. Eng. Mater. 16, 517 (2014).
ACKNOWLEDGMENTS
The authors would like to acknowledge the help of Mr. Devi Lal and Mr. Amit Kumar in data analysis and microscopy of fractured surfaces, respectively, and they thank Dr. Sarath Menon of Naval Postgraduate School, Monterey, CA, USA, for providing the cast Al–7%Si samples. This work was partially funded by a Seed Grant (Indian Institute of Science, Bangalore) to PK. The work was supported in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mungole, T., Kumar, P., Kawasaki, M. et al. A critical examination of the paradox of strength and ductility in ultrafine-grained metals. Journal of Materials Research 29, 2534–2546 (2014). https://doi.org/10.1557/jmr.2014.272
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2014.272