Skip to main content

Advertisement

Log in

Incipient straining in severe plastic deformation methods

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Knowledge of the plasticity associated with the incipient stage of chip formation is useful toward developing an understanding of the deformation field underlying severe plastic deformation processes. The transition from a transient state of straining to a steady state was investigated in plane strain machining of a model material system—copper. Characterization of the evolution to a steady-state deformation field was made by image correlation, hardness mapping, load analysis, and microstructure characterization. Empirical relationships relating the deformation heterogeneity and the process parameters were found and explained by the corresponding effects on shear plane geometry. The results are potentially useful to facilitate a framework for process design of large strain deformation configurations, wherein transient deformation fields prevail. These implications are considered in the present study to quantify the efficiency of processing methods for bulk ultrafine-grained metals by large strain extrusion machining and equal channel angular pressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. T.G. Langdon and R.Z. Valiev: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).

    Article  Google Scholar 

  2. T.L. Brown, C. Saldana, T.G. Murthy, J.B. Mann, Y. Guo, L. Allard, A.H. King, W.D. Compton, K.P. Trumble, and S. Chandrasekar: A study of the interactive effects of strain, strain rate and temperature in severe plastic deformation of copper. Acta Mater. 57, 5491 (2009).

    Article  CAS  Google Scholar 

  3. H.S. Kim: On the effect of acute angles on deformation homogeneity in equal channel angular pressing. Mater. Sci. Eng., A 430, 346 (2006).

    Article  Google Scholar 

  4. W. Moscoso: Severe plastic deformation and nanostructured materials by large strain extrusion machining. Ph.D. Dissertation, Purdue University, West Lafayette, IN, 2008.

  5. V.M. Segal: Materials processing by simple shear. Mater. Sci. Eng., A 197, 157 (1995).

    Article  Google Scholar 

  6. M. Sevier, H.T.Y. Yang, W. Moscoso, and S. Chandrasekar: Analysis of severe plastic deformation by large strain extrusion machining. Metall. Mater. Trans. A 39, 2645 (2008).

    Article  Google Scholar 

  7. C. Saldana, A.H. King, and S. Chandrasekar: Thermal stability and strength of deformation microstructures in pure copper. Acta Mater. 60, 4107 (2012).

    Article  CAS  Google Scholar 

  8. G.M. Stoica, D.E. Fielden, R. McDaniels, Y. Liu, B. Huang, P.K. Liaw, C. Xu, and T.G. Langdon: An analysis of the shear zone for metals deformed by equal-channel angular processing. Mater. Sci. Eng., A 411, 239 (2005).

    Article  Google Scholar 

  9. J. Jung, S.C. Yoon, H.J. Jun, and H.S. Kim: Finite element analysis of deformation homogeneity during continuous and batch type equal channel angular pressing. J. Mater. Eng. Perform. 22, 3222 (2013).

    Article  CAS  Google Scholar 

  10. E.Y. Yoon, J.H. Yoo, S.C. Yoon, Y.Y. Kim, S.C. Baik, and H.S. Kim: Analyses of route Bc equal channel angular pressing and post-equal channel angular pressing behavior by the finite element method. J. Mater. Sci. 45, 4682 (2010).

    Article  CAS  Google Scholar 

  11. W. Wei, A.V. Nagasekhar, G. Chen, Y. Tick-Hon, and K.X. Wei: Origin of inhomogenous behavior during equal channel angular pressing. Scr. Mater. 54, 1865 (2006).

    Article  CAS  Google Scholar 

  12. F. Djavanroodi and M. Ebrahimi: Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Mater. Sci. Eng., A 527, 1230 (2010).

    Article  Google Scholar 

  13. S. Li, M.A.M. Bourke, I.J. Beyerlein, D.J. Alexander, and B. Clausen: Finite element analysis of the plastic deformation zone and working load in equal channel angular extrusion. Mater. Sci. Eng., A 382, 217 (2004).

    Article  Google Scholar 

  14. V.P. Basavaraj, U. Chakkingal, and T.S.P. Kumar: Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation. J. Mater. Process. Technol. 209, 89 (2009).

    Article  Google Scholar 

  15. A. Rosochowski, L. Olejnik, and M. Richert: 3D ECAP square aluminum billets. In Advanced Methods in Material Forming (Springer, Berlin, Heidelberg, 2007).

    Google Scholar 

  16. R.B. Figueiredo, A.L. Costa, M.S. Andrade, M.T. Aguilar, and P.R. Cetlin: Microstructure and mechanical properties of Pb-4% Sb alloy processed by equal channel angular pressing. Mater. Res. 9, 101 (2006).

    Article  CAS  Google Scholar 

  17. D.P. Field, L.T. Bradford, M.M. Nowell, and T.M. Lillo: The role of annealing twins during recrystallization of Cu. Acta Mater. 55, 4233 (2007).

    Article  CAS  Google Scholar 

  18. W. Moscoso, M.R. Shankar, J.B. Mann, W.D. Compton, and S. Chandrasekar: Bulk nanostructured materials by large strain extrusion machining. J. Mater. Res. 22, 201 (2007).

    Article  CAS  Google Scholar 

  19. V. Madhavan, S. Chandrasekar, and T.N. Farris: Machining as a wedge indentation. J. Appl. Mech. 6, 128 (1998).

    Google Scholar 

  20. K.J. Weinmann and B.F. Von Turkovich: Mechanics of tool workpiece engagement and incipient deformation in machining of 70/30 brass. J. Eng. Ind. Trans. ASME 93, 1079 (1971).

    Article  Google Scholar 

  21. B.E. Klamecki: Incipient chip formation in metal cutting: A three-dimension finite element analysis. Ph.D. Dissertation, University of Illinois, 1973.

  22. D. Ko, S. Ko, and B. Kim: Rigid-thermoviscoplastic finite element simulation of non-steady-state orthogonal cutting. J. Mater. Process. Technol. 131, 345 (2002).

    Article  Google Scholar 

  23. S. Lo: An analysis of cutting under different rake angles using the finite element method. J. Mater. Process. Technol. 105, 143 (1999).

    Article  Google Scholar 

  24. K. Okushima and K. Hitomi: Transitional phenomenon in metal cutting. Int. J. Prod. Res. 10, 234 (1972).

    Article  Google Scholar 

  25. M. Oguri, H. Fujii, K. Yamaguchi, and S. Kato: On transient cutting mechanics at the initial stage of peripheral milling process. Bull. JSME 19, 61 (1976).

    Article  Google Scholar 

  26. M.C. Shaw: Metal Cutting Principles (Oxford University Press, New York, 1984).

    Google Scholar 

  27. R.J. Adrian and J. Westerweel: Particle Image Velocimetry (Cambridge University Press, New York, 2011).

    Google Scholar 

  28. R. Calistes, S. Swaminathan, T.G. Murthy, C. Huang, C. Saldana, M.R. Shankar, and S. Chandrasekar: Controlling gradation of surface strains and nanostructuring by large-strain machining. Scr. Mater. 60, 17 (2009).

    Article  CAS  Google Scholar 

  29. S. Lee, J. Hwang, M.R. Shankar, S. Chandrasekar, and W.D. Compton: Large strain deformation field in machining. Metall. Mater. Trans. A 37, 1633 (2006).

    Article  Google Scholar 

  30. Y. Guo, C. Saldana, W.D. Compton, and S. Chandrasekar: Controlling deformation and microstructure on machined surfaces. Acta Mater. 59, 4538 (2011).

    Article  CAS  Google Scholar 

  31. F.O. Sonmez and A. Demir: Analytical relations between hardness and strain for cold formed parts. J. Mater. Process. Technol. 186, 163 (2007).

    Article  CAS  Google Scholar 

  32. M.M. Chaudhri: Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper. Acta Mater. 46, 3047 (1998).

    Article  CAS  Google Scholar 

  33. H. Hanemann and A. Schrader: Atlas Metallographicus (Gebruder Borntraeger, Berlin, Germany, 1927), pp. 760.

    Google Scholar 

  34. P.A.R. Rosa, O. Kolednik, P.A.F. Martins, and A.G. Atkins: The transient beginning to machining and the transition to steady-state cutting. Int. J. Mater. Manuf. 47, 1904 (2007).

    Article  Google Scholar 

  35. Y.K. Potdar and A.T. Zehnder: Measurements and simulations of temperature and deformation fields in transient metal cutting. J. Manuf. Sci. Eng. 125, 645 (2003).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work at The Pennsylvania State University was supported in part by NSF (Grant No. CMMI 1130852) and Third Wave Systems via DOE (Grant No. DE-EE0005762). The work at the Indian Institute of Science was supported in part by DST (Grant No. SR-CE-0057-2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Saldana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, F., Yadav, S., Moreno, C. et al. Incipient straining in severe plastic deformation methods. Journal of Materials Research 29, 718–728 (2014). https://doi.org/10.1557/jmr.2014.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.26

Navigation