Skip to main content
Log in

Preparation of TiNi films by diffusion technology and the study of the formation sequence of the intermetallics in Ti–Ni systems

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study presented a novel fabrication process for TiNi thin films by vacuum diffusion technology using reactive Ni/Ti/Ni multilayer thin films. The sandwiched thin films were prepared by chemical nickel plating. Ni/Ti/Ni multilayer films were heat treated for various diffusion times and temperatures and the influences of the temperature and diffusion time on the interdiffusion behavior of the Ti–Ni system were researched in detail. The results showed that a homogeneous TiNi thin film was obtained at 1173 K with a diffusion time of 4 h. Moreover, the formation sequence of the intermetallics in the Ti–Ni diffusion system was investigated by thermodynamic analysis and experiment. It was found that three compounds — TiNi3, Ti2Ni, and TiNi — formed in the diffusion process at the Ti/Ni interfaces. More importantly, the nucleation of TiNi3 and Ti2Ni was prior to that of TiNi because of the lower reaction Gibbs free energy and increasing interface energy of TiNi3 and Ti2Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. S. Simões, F. Viana, A.S. Ramos, M.T. Vieira, and M. Vieira: Reaction zone formed during diffusion bonding of TiNi to Ti6Al4V using Ni/Ti nanolayers. J. Mater. Sci. 48(21), 7718 (2013).

    Google Scholar 

  2. M. Patel, K.S. Moon, S.K. Kassegne, and K. Morsi: Effects of current intensity and cumulative exposure time on the localized current-activated sintering of titanium nickelides. J. Mater. Sci. 46(20), 6690 (2011).

    CAS  Google Scholar 

  3. Y. Fu, W. Huang, H. Du, X. Huang, J. Tan, and X. Gao: Characterization of TiNi shape-memory alloy thin films for MEMS applications. Surf. Coat. Technol. 145(1), 107 (2001).

    CAS  Google Scholar 

  4. S.A. Wilson, R.P. Jourdain, Q. Zhang, R.A. Dorey, C.R. Bowen, M. Willander, Q.U. Wahab, M. Willander, S.M. Al-hilli, and O. Nur: New materials for micro-scale sensors and actuators: An engineering review. Mater. Sci. Eng., R 56(1), 1 (2007).

    Google Scholar 

  5. Y. Fu, H. Du, W. Huang, S. Zhang, and M. Hu: TiNi-based thin films in MEMS applications: A review. Sens. Actuators, A 112(2), 395–408 (2004).

    CAS  Google Scholar 

  6. A. Ishida and V. Martynov: Sputter-deposited shape-memory alloy thin films: Properties and applications. MRS Bull. 27(02), 111–114 (2002).

    CAS  Google Scholar 

  7. R.L. de Miranda, C. Zamponi, and E. Quandt: Fabrication of TiNi thin film stents. Smart Mater. Struct. 18(10), 104010 (2009).

    Google Scholar 

  8. Z. Lin, L. Wang, X. Xue, W. Lu, J. Qin, and D. Zhang: Microstructure evolution and mechanical properties of a Ti–35Nb–3Zr–2Ta biomedical alloy processed by equal channel angular pressing (ECAP). Mater. Sci. Eng., C 33(8), 4551 (2013).

    CAS  Google Scholar 

  9. S-W. Kim, Y.M. Jeon, C.H. Park, J.H. Kim, D-H. Kim, and J-T. Yeom: Martensitic phase transformation of TiNi thin films fabricated by co-sputtering deposition. J. Alloys Compd. 580, 5 (2013).

    CAS  Google Scholar 

  10. Y. Sekiguchi, K. Funami, and H. Funakubo: Deposition of NiTi shape memory alloy thin film by vacuum evaporation. In Proceedings of 32nd Meeting of Japan Society of Materials, Japan, 1983; pp. 65–67.

  11. E. Makino, M. Uenoyama, and T. Shibata: Flash evaporation of TiNi shape memory thin film for microactuators. Sens. Actuators, A 71(3), 187 (1998).

    CAS  Google Scholar 

  12. E. Makino, T. Mitsuya, and T. Shibata: Fabrication of TiNi shape memory micropump. Sens. Actuators, A 88(3), 256 (2001).

    CAS  Google Scholar 

  13. E. Makino, T. Shibata, and K. Kato: Dynamic thermo-mechanical properties of evaporated TiNi shape memory thin film. Sens. Actuators, A 78(2), 163 (1999).

    CAS  Google Scholar 

  14. T. Lehnert, S. Tixier, P. Böni, and R. Gotthardt: A new fabrication process for Ni–Ti shape memory thin films. Mater. Sci. Eng., A 273–275(0), 713 (1999).

    Google Scholar 

  15. K.K. Ho and G.P. Carman: Sputter deposition of NiTi thin film shape memory alloy using a heated target. Thin Solid Films 370(1–2), 18 (2000).

    CAS  Google Scholar 

  16. P. Surbled, C. Clerc, B. Le Pioufle, M. Ataka, and H. Fujita: Effect of the composition and thermal annealing on the transformation temperatures of sputtered TiNi shape memory alloy thin films. Thin Solid Films 401(1), 52 (2001).

    CAS  Google Scholar 

  17. A.D. Johnson: Vacuum-deposited TiNi shape memory film: Characterization and applications in microdevices. J. Micromech. Microeng. 1(1), 34 (1991).

    CAS  Google Scholar 

  18. G. Pan, Z. Cao, M. Wei, L. Xu, J. Shi, and X. Meng: Superelasticity of TiNi thin films induced by cyclic nanoindentation deformation at nanoscale. Mater. Sci. Eng., A 600, 8 (2014).

    CAS  Google Scholar 

  19. X. Chen, Y. Lu, Z. Ren, and S. Zhu: Fabrication of TiNi shape memory alloy thin films by pulsed-laser deposition. J. Mater. Res. 17(02), 279 (2002).

    CAS  Google Scholar 

  20. P.R.S.H.O.T.B. Massalski and L. Kacprzak: Alloy Phase Diagrams of the ASM Handbook, 9th ed. (ASM International Press, Detroit, MI, 1992); p. 1240.

    Google Scholar 

  21. G. Bastin and G. Rieck: Diffusion in the titanium-nickel system: I. Occurrence and growth of the various intermetallic compounds. Metall. Trans. 5(8), 1817 (1974).

    CAS  Google Scholar 

  22. G. Bastin and G. Rieck: Diffusion in the titanium-nickel system: II. Calculations of chemical and intrinsic diffusion coefficients. Metall. Trans. 5(8), 1827 (1974).

    CAS  Google Scholar 

  23. J. Garay, U. Anselmi-Tamburini, and Z.A. Munir: Enhanced growth of intermetallic phases in the Ni–Ti system by current effects. Acta Mater. 51(15), 4487 (2003).

    CAS  Google Scholar 

  24. V.I. Nizhenko: Free surface energy as a criterion for the sequence of intermetallic layer formation in reaction couples. Powder Metall. Met. Ceram. 43(5–6), 273 (2004).

    CAS  Google Scholar 

  25. R. Benedictus, A. Böttger, and E. Mittemeijer: Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries. Phys. Rev. B 54(13), 9109 (1996).

    CAS  Google Scholar 

  26. H. Liu, H. Wang, W. Zhu, X. Tao, and Z. Jin: Prediction of formation of intermetallic compounds in diffusion couples. J. Mater. Res. 22(6), 1502 (2007).

    CAS  Google Scholar 

  27. S-H. Wei and C-C. Lin: Phase transformation and microstructural development of zirconia/stainless steel bonded with a Ti/Ni/Ti interlayer for the potential application in solid oxide fuel cells. J. Mater. Res. 29(08), 923 (2014).

    CAS  Google Scholar 

  28. Y. Li, L. Cui, P. Shi, and D. Yang: Phase transformation behaviors of prestrained TiNi shape memory alloy fibers under the constraint of a hard substrate. Mater. Lett. 49(3), 224 (2001).

    CAS  Google Scholar 

  29. F. De Boer, R. Boom, W. Mattens, A. Miedema, and A. Niessen: Cohesion in Metals. Transition Metal Alloys: Cohesion and Structure (North-Holland, Amsterdam, 1989); Chap. 2.

    Google Scholar 

  30. A. Miedema, P. De Chatel, and F. De Boer: Cohesion in alloys—fundamentals of a semi-empirical model. Physica B + C 100(1), 1 (1980).

    CAS  Google Scholar 

  31. A. Miedema: On the heat of formation of solid alloys. II. J. Less-Common Met. 46(1), 67 (1976).

    CAS  Google Scholar 

  32. J. Liu, Y. Su, Y. Xu, L. Luo, J. Guo, and H. Fu: First phase selection in solid Ti/Al diffusion couple. Rare Met. Mater. Eng. 40(5), 753 (2011).

    CAS  Google Scholar 

  33. I. Barin, F. Sauert, E. Schultze-Rhonhof, and W.S. Sheng: Thermochemical Data of Pure Substances, 3rd ed.; VCH Verlagsgesellschaft mbH: Weinheim, Federal Republic of Germany, 1995; pp. 68, 70–71.

    Google Scholar 

  34. F. Spaepen and R.B. Meyer: The surface tension in a structural model for the solid-liquid interface. Scr. Metall. 10(3), 257 (1976).

    Google Scholar 

  35. R. Ewing: The free energy of the crystal-melt interface from the radial distribution function—further calculations. Philos. Mag. 25(4), 779 (1972).

    CAS  Google Scholar 

  36. U. Gosele and K. Tu: Growth kinetics of planar binary diffusion couples: ‘Thin-film case’ versus ‘bulk cases’. J. Appl. Phys. 53(4), 3252 (1982).

    Google Scholar 

  37. S. Hinotani and Y. Ohmori: The microstructure of diffusion-bonded Ti/Ni interface. Trans. Japan Inst. Met. 29, 116 (1988).

    CAS  Google Scholar 

  38. Y. Zhou, Q. Wang, D. Sun, and X. Han: Co-effect of heat and direct current on growth of intermetallic layers at the interface of Ti–Ni diffusion couples. J. Alloys Compd. 509(4), 1201 (2011).

    CAS  Google Scholar 

  39. A. Taylor and R. Floyd: Precision measurements of lattice parameters of non-cubic crystals. Acta Crystallogr. 3(4), 285 (1950).

    CAS  Google Scholar 

  40. G. Yurko, J. Barton, and J.G. Parr: The crystal structure of Ti2Ni. Acta Crystallogr. 12(11), 909 (1959).

    CAS  Google Scholar 

  41. K. Otsuka and X. Ren: Recent developments in the research of shape memory alloys. Intermetallics 7(5), 511 (1999).

    CAS  Google Scholar 

  42. T. Fukuda, T. Kakeshita, H. Houjoh, S. Shiraishi, and T. Saburi: Electronic structure and stability of intermetallic compounds in the Ti–Ni system. Mater. Sci. Eng., A 273, 166–169 (1999).

    Google Scholar 

  43. H. Bahmanpour, Y. Sun, T. Hu, D. Zhang, J. Wongsa-Ngam, T.G. Langdon, and E.J. Lavernia: Microstructural evolution of cryomilled Ti/Al mixture during high-pressure torsion. J. Mater. Res. 29(04), 578 (2014).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to acknowledge the financial support provided by the National Nature Science Foundation of China under Grant No. 51371114, the 973 Program under Grant No. 2012CB619600, the China Postdoctoral Science Foundation under Grant No. 14Z102060027, and the Shanghai Postdoctoral Sustentation Fund under Grant No. 14R21410900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianglong Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, X., Guo, X., Han, Y. et al. Preparation of TiNi films by diffusion technology and the study of the formation sequence of the intermetallics in Ti–Ni systems. Journal of Materials Research 29, 2707–2716 (2014). https://doi.org/10.1557/jmr.2014.264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.264

Navigation