Skip to main content
Log in

Highly fluorescent CdTe nanocrystals: Synthesis, characterization, property, mechanism, and application as a sensor for biomolecule analysis

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Highly luminescent CdTe quantum dots (QDs) were prepared through a fast, facile, and straightforward method. The crystal structure, particle size, optical properties as well as molecular interactions between the CdTe QDs and their capping agents have been investigated by high resolution transmission electron microscopy, selected area electron diffraction, scanning transmission electron microscope–energy dispersive x-ray spectroscopy, UV-vis absorption, photoluminescence, and Fourier transform infrared, respectively. The results illustrate that the CdTe nanoparticles exhibit cubic structure and the average crystallite size is 2.3 nm. Meanwhile, fluorescence and UV-vis spectroscopic techniques were used to study the interaction between hemin and the well-defined CdTe QDs. In weak basic media, the fluorescence of CdTe QDs was quenched notably by hemin, and the quenching values were proportional to the concentration of the quencher in a certain range. The quenching mechanism was discussed to be a dynamic quenching procedure, collisional process, and hemin as a fluorescence quencher donated its electron to CdTe QDs to occupy the hole and accordingly disrupted the electron–hole recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. J. Yao, Y. Sun, M. Yang, and Y. Duan: Chemistry, physics and biology of graphene-based nanomaterials: New horizons for sensing, imaging and medicine. J. Mater. Chem. 22(29), 14313 (2012).

    Article  CAS  Google Scholar 

  2. M. Yang, J. Yao, and Y. Duan: Graphene and its derivatives for cell biotechnology. Analyst 138(1), 72 (2013).

    Article  CAS  Google Scholar 

  3. P.V. Kamat, K. Tvrdy, D.R. Baker, and J.G. Radich: Beyond photovoltaics: Semiconductor nanoarchitectures for liquid-junction solar cells. Chem. Rev. 110(11), 6664 (2010).

    Article  CAS  Google Scholar 

  4. I.L. Medintz, M.H. Stewart, S.A. Trammell, K. Susumu, J.B. Delehanty, B.C. Mei, J.S. Melinger, J.B. Blanco-Canosa, P.E. Dawson, and H. Mattoussi: Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat. Mater. 9(8), 676 (2010).

    Article  CAS  Google Scholar 

  5. L. Wu, B. Quan, Y. Liu, R. Song, and Z. Tang: One-pot synthesis of liquid Hg/solid beta-HgS metal-semiconductor heterostructures with unique electrical properties. ACS Nano 5(3), 2224 (2011).

    Article  CAS  Google Scholar 

  6. R.G. Chaudhuri and S. Paria: Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112(4), 2373 (2012).

    Article  CAS  Google Scholar 

  7. M.K. So, C.J. Xu, A.M. Loening, S.S. Gambhir, and J.H. Rao: Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol. 24(3), 339 (2006).

    Article  CAS  Google Scholar 

  8. X.Y. Wu, H.J. Liu, J.Q. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N. Ge, F. Peale, and M.P. Bruchez: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21(1), 41 (2003).

    Article  CAS  Google Scholar 

  9. H. Mattoussi, J.M. Mauro, E.R. Goldman, G.P. Anderson, V.C. Sundar, F.V. Mikulec, and M.G. Bawendi: Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122(49), 12142 (2000).

    Article  CAS  Google Scholar 

  10. A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, and J.C. Johnson: Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110(11), 6873 (2010).

    Article  CAS  Google Scholar 

  11. A.C.S. Samia, X.B. Chen, and C. Burda: Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 125(51), 15736 (2003).

    Article  CAS  Google Scholar 

  12. Y. Shi, J. Wang, S. Li, Z. Wang, X. Zang, X. Zu, X. Zhang, F. Guo, and G. Tong: Photoluminescence-enhanced CdTe quantum dots by hyperbranched poly (amidoamine) s functionalization. J. Mater. Res. 28(14), 1940 (2013).

    Article  CAS  Google Scholar 

  13. X.H. Gao and S.M. Nie: Doping mesoporous materials with multicolor quantum dots. J. Phys. Chem. B 107(42), 11575 (2003).

    Article  CAS  Google Scholar 

  14. X.H. Gao and S.M. Nie: Quantum dot-encoded mesoporous beads with high brightness and uniformity: Rapid readout using flow cytometry. Anal. Chem. 76(8), 2406 (2004).

    Article  CAS  Google Scholar 

  15. G. Aragay, F. Pino, and A. Merkoçi: Nanomaterials for sensing and destroying pesticides. Chem. Rev. 112(10), 5317 (2012).

    Article  CAS  Google Scholar 

  16. H. Zhou, G. Zhou, Q. Du, H. Bi, and J. Zhou: Surfactant-assisted reflux synthesis of PbS nanostructures and their properties. J. Mater. Res. 1(1), 1 (2012).

    Google Scholar 

  17. J.K. Jaiswal, H. Mattoussi, J.M. Mauro, and S.M. Simon: Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21(1), 47 (2003).

    Article  CAS  Google Scholar 

  18. R.C. Somers, M.G. Bawendi, and D.G. Nocera: CdSe nanocrystal based chem-/bio-sensors. Chem. Soc. Rev. 36(4), 579 (2007).

    Article  CAS  Google Scholar 

  19. B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, and A. Libchaber: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599), 1759 (2002).

    Article  CAS  Google Scholar 

  20. H. Kobayashi, M. Ogawa, R. Alford, P.L. Choyke, and Y. Urano: New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110(5), 2620 (2010).

    Article  CAS  Google Scholar 

  21. X-F. Chen, M. Zhou, Y-P. Chang, C-L. Ren, H-L. Chen, and X-G. Chen: Novel synthesis of beta-cyclodextrin functionalized CdTe quantum dots as luminescent probes. Appl. Surf. Sci. 263, 491 (2012).

    Article  CAS  Google Scholar 

  22. X. Qiao, W. Jian-Hao, W. Zhan, Y. Zhao-Hui, Y. Qin, and Z. Yuan-Di: Interaction of CdTe quantum dots with DNA. Electrochem. Commun. 10(9), 1337 (2008).

    Article  CAS  Google Scholar 

  23. J.F. Callan, R.C. Mulrooney, S. Kamila, and B. McCaughan: Anion sensing with luminescent quantum dots: A modular approach based on the photoinduced electron transfer (PET) mechanism. J. Fluoresc. 18(2), 527 (2008).

    Article  CAS  Google Scholar 

  24. D. Neuman, A.D. Ostrowski, A.A. Mikhailovsky, R.O. Absalonson, G.F. Strouse, and P.C. Ford: Quantum dot fluorescence quenching pathways with Cr(III) complexes. Photosensitized NO production from trans-Cr(cyclam)(ONO)(2)(+)J. Am. Chem. Soc. 130(1), 168 (2008).

    Article  CAS  Google Scholar 

  25. T. Jin, F. Fujii, E. Yamada, Y. Nodasaka, and M. Kinjo: Preparation and characterization of thiacalix[4]arene coated water-soluble CdSe/ZnS quantum dots as a fluorescent probe for Cu2+ ions. Comb. Chem. High Throughput Screening 10(6), 473 (2007).

    Article  CAS  Google Scholar 

  26. Q. Wang, L. Yang, T. Fang, S. Wu, P. Liu, X. Min, and X. Li: Interactions between CdSe/CdS quantum dots and DNA through spectroscopic and electrochemical methods. Appl. Surf. Sci. 257(23), 9747 (2011).

    Article  CAS  Google Scholar 

  27. A.S. Tsiftsoglou, A.I. Tsamadou, and L.C. Papadopoulou: Heme as key regulator of major mammalian cellular functions: Molecular, cellular, and pharmacological aspects. Pharmacol. Ther. 111(2), 327 (2006).

    Article  CAS  Google Scholar 

  28. N. Lu, L. Yi, Q. Deng, J. Li, Z. Gao, and H. Li: The interaction between desferrioxamine and hemin: A potential toxicological implication. Toxicol. In Vitro 26(5), 732 (2012).

    Article  CAS  Google Scholar 

  29. N. Lu, M. Zhang, H. Li, and Z. Gao: Completely different effects of desferrioxamine on hemin/nitrite/H2O2-induced bovine serum albumin nitration and oxidation. Chem. Res. Toxicol. 21(6), 1229 (2008).

    Article  CAS  Google Scholar 

  30. W.W. Yu, L. Qu, W. Guo, and X. Peng: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15(14), 2854 (2003).

    Article  CAS  Google Scholar 

  31. N. Colthup, L. Daly, and S. Wiberley: Introduction to Infrared and Raman Spectroscopy (Hacourt Brace Jovanovich, 1990), p. 291.

  32. S.W. Han, H.S. Han, and K. Kim: Infrared and Raman spectra of 4-cyanobenzoic acid on powdered silver. Vib. Spectrosc. 21(1–2), 133 (1999).

    Article  CAS  Google Scholar 

  33. Y.T. Tao: Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum. J. Am. Chem. Soc. 115(10), 4350 (1993).

    Article  CAS  Google Scholar 

  34. S-G. Wang, Q-B. Yang, J. Bai, Y. Song, C-Q. Zhang, and Y-X. Li: Transferring CdTe nanoparticles from liquid phase to polyvinylpyrrolidone nanofibers by electrospinning and detecting its photoluminescence property. Chem. Res. Chin. Univ. 24(4), 459 (2008).

    Article  Google Scholar 

  35. H. Zhang, Z. Zhou, B. Yang, and M. Gao: The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J. Phys. Chem. B 107(1), 8 (2003).

    Article  CAS  Google Scholar 

  36. D. Huang, F. Geng, Y. Liu, X. Wang, J. Jiao, and L. Yu: Biomimetic interactions of proteins with functionalized cadmium sulfide quantum dots. Colloids Surf., A 392(1), 191 (2011).

    Article  CAS  Google Scholar 

  37. Q. Xiao, S. Huang, Z-D. Qi, B. Zhou, Z-K. He, and Y. Liu: Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim. Biophys. Acta 1784(7), 1020 (2008).

    Article  CAS  Google Scholar 

  38. J. Peng, S. Liu, S. Yan, X. Fan, and Y. He: A study on the interaction between CdTe quantum dots and chymotrypsin using optical spectroscopy. Colloids Surf., A 359, 13 (2010).

    Article  CAS  Google Scholar 

  39. L. Chen, X. Zhang, C. Zhang, G. Zhou, W. Zhang, D. Xiang, Z. He, and H. Wang: Dual-color fluorescence and homogeneous immunoassay for the determination of human enterovirus 71. Anal. Chem. 83, 7316 (2011).

    Article  CAS  Google Scholar 

  40. S. Comby and T. Gunnlaugsson: Luminescent lanthanide-functionalized gold nanoparticles: Exploiting the interaction with bovine serum albumin for potential sensing applications. ACS Nano. 5(9), 7184 (2011).

    Article  CAS  Google Scholar 

  41. B.Y. Mikhail and S. Achilefu: Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641 (2010).

    Article  CAS  Google Scholar 

  42. J.R. Lakowicz: Principles of Fluorescence Spectroscopy (Springer, New York, NY, 2009).

    Google Scholar 

  43. H.M.E. Azzazy, M.M.H. Mansour, and S.C. Kazmierczak: From diagnostics to therapy: Prospects of quantum dots. Clin. Biochem. 40(13–14), 917 (2007).

    Article  CAS  Google Scholar 

  44. L. Stryer: Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819 (1978).

    Article  CAS  Google Scholar 

  45. T. Pons and H. Mattoussi: Investigating biological processes at the single molecule level using luminescent quantum dots. Ann. Biomed. Eng. 37(10), 1934 (2009).

    Article  Google Scholar 

  46. J.F. Sun, C.L. Ren, L.H. Liu, and X.G. Chen: CdTe quantum dots as fluorescence sensor for the determination of vitamin B6 in aqueous solution. Chin. Chem. Lett. 19(7), 855 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the financial support from National Major Scientific Instruments and Equipments Development Special Funds (Grant No. 2011YQ030113), National Natural Science Foundation of China (Grant No. 21275105), National Recruitment Program of Global Experts (NRPGE), the Hundred Talents Program of Sichuan Province (HTPSP), and the Startup Funding of Sichuan University for setting up the Research Center of Analytical Instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiang Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, J., Yang, M. & Duan, Y. Highly fluorescent CdTe nanocrystals: Synthesis, characterization, property, mechanism, and application as a sensor for biomolecule analysis. Journal of Materials Research 29, 633–640 (2014). https://doi.org/10.1557/jmr.2014.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.25

Navigation