Abstract
Highly luminescent CdTe quantum dots (QDs) were prepared through a fast, facile, and straightforward method. The crystal structure, particle size, optical properties as well as molecular interactions between the CdTe QDs and their capping agents have been investigated by high resolution transmission electron microscopy, selected area electron diffraction, scanning transmission electron microscope–energy dispersive x-ray spectroscopy, UV-vis absorption, photoluminescence, and Fourier transform infrared, respectively. The results illustrate that the CdTe nanoparticles exhibit cubic structure and the average crystallite size is 2.3 nm. Meanwhile, fluorescence and UV-vis spectroscopic techniques were used to study the interaction between hemin and the well-defined CdTe QDs. In weak basic media, the fluorescence of CdTe QDs was quenched notably by hemin, and the quenching values were proportional to the concentration of the quencher in a certain range. The quenching mechanism was discussed to be a dynamic quenching procedure, collisional process, and hemin as a fluorescence quencher donated its electron to CdTe QDs to occupy the hole and accordingly disrupted the electron–hole recombination.
Similar content being viewed by others
References
J. Yao, Y. Sun, M. Yang, and Y. Duan: Chemistry, physics and biology of graphene-based nanomaterials: New horizons for sensing, imaging and medicine. J. Mater. Chem. 22(29), 14313 (2012).
M. Yang, J. Yao, and Y. Duan: Graphene and its derivatives for cell biotechnology. Analyst 138(1), 72 (2013).
P.V. Kamat, K. Tvrdy, D.R. Baker, and J.G. Radich: Beyond photovoltaics: Semiconductor nanoarchitectures for liquid-junction solar cells. Chem. Rev. 110(11), 6664 (2010).
I.L. Medintz, M.H. Stewart, S.A. Trammell, K. Susumu, J.B. Delehanty, B.C. Mei, J.S. Melinger, J.B. Blanco-Canosa, P.E. Dawson, and H. Mattoussi: Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat. Mater. 9(8), 676 (2010).
L. Wu, B. Quan, Y. Liu, R. Song, and Z. Tang: One-pot synthesis of liquid Hg/solid beta-HgS metal-semiconductor heterostructures with unique electrical properties. ACS Nano 5(3), 2224 (2011).
R.G. Chaudhuri and S. Paria: Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112(4), 2373 (2012).
M.K. So, C.J. Xu, A.M. Loening, S.S. Gambhir, and J.H. Rao: Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol. 24(3), 339 (2006).
X.Y. Wu, H.J. Liu, J.Q. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N. Ge, F. Peale, and M.P. Bruchez: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21(1), 41 (2003).
H. Mattoussi, J.M. Mauro, E.R. Goldman, G.P. Anderson, V.C. Sundar, F.V. Mikulec, and M.G. Bawendi: Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122(49), 12142 (2000).
A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, and J.C. Johnson: Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110(11), 6873 (2010).
A.C.S. Samia, X.B. Chen, and C. Burda: Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 125(51), 15736 (2003).
Y. Shi, J. Wang, S. Li, Z. Wang, X. Zang, X. Zu, X. Zhang, F. Guo, and G. Tong: Photoluminescence-enhanced CdTe quantum dots by hyperbranched poly (amidoamine) s functionalization. J. Mater. Res. 28(14), 1940 (2013).
X.H. Gao and S.M. Nie: Doping mesoporous materials with multicolor quantum dots. J. Phys. Chem. B 107(42), 11575 (2003).
X.H. Gao and S.M. Nie: Quantum dot-encoded mesoporous beads with high brightness and uniformity: Rapid readout using flow cytometry. Anal. Chem. 76(8), 2406 (2004).
G. Aragay, F. Pino, and A. Merkoçi: Nanomaterials for sensing and destroying pesticides. Chem. Rev. 112(10), 5317 (2012).
H. Zhou, G. Zhou, Q. Du, H. Bi, and J. Zhou: Surfactant-assisted reflux synthesis of PbS nanostructures and their properties. J. Mater. Res. 1(1), 1 (2012).
J.K. Jaiswal, H. Mattoussi, J.M. Mauro, and S.M. Simon: Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21(1), 47 (2003).
R.C. Somers, M.G. Bawendi, and D.G. Nocera: CdSe nanocrystal based chem-/bio-sensors. Chem. Soc. Rev. 36(4), 579 (2007).
B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, and A. Libchaber: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599), 1759 (2002).
H. Kobayashi, M. Ogawa, R. Alford, P.L. Choyke, and Y. Urano: New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110(5), 2620 (2010).
X-F. Chen, M. Zhou, Y-P. Chang, C-L. Ren, H-L. Chen, and X-G. Chen: Novel synthesis of beta-cyclodextrin functionalized CdTe quantum dots as luminescent probes. Appl. Surf. Sci. 263, 491 (2012).
X. Qiao, W. Jian-Hao, W. Zhan, Y. Zhao-Hui, Y. Qin, and Z. Yuan-Di: Interaction of CdTe quantum dots with DNA. Electrochem. Commun. 10(9), 1337 (2008).
J.F. Callan, R.C. Mulrooney, S. Kamila, and B. McCaughan: Anion sensing with luminescent quantum dots: A modular approach based on the photoinduced electron transfer (PET) mechanism. J. Fluoresc. 18(2), 527 (2008).
D. Neuman, A.D. Ostrowski, A.A. Mikhailovsky, R.O. Absalonson, G.F. Strouse, and P.C. Ford: Quantum dot fluorescence quenching pathways with Cr(III) complexes. Photosensitized NO production from trans-Cr(cyclam)(ONO)(2)(+)J. Am. Chem. Soc. 130(1), 168 (2008).
T. Jin, F. Fujii, E. Yamada, Y. Nodasaka, and M. Kinjo: Preparation and characterization of thiacalix[4]arene coated water-soluble CdSe/ZnS quantum dots as a fluorescent probe for Cu2+ ions. Comb. Chem. High Throughput Screening 10(6), 473 (2007).
Q. Wang, L. Yang, T. Fang, S. Wu, P. Liu, X. Min, and X. Li: Interactions between CdSe/CdS quantum dots and DNA through spectroscopic and electrochemical methods. Appl. Surf. Sci. 257(23), 9747 (2011).
A.S. Tsiftsoglou, A.I. Tsamadou, and L.C. Papadopoulou: Heme as key regulator of major mammalian cellular functions: Molecular, cellular, and pharmacological aspects. Pharmacol. Ther. 111(2), 327 (2006).
N. Lu, L. Yi, Q. Deng, J. Li, Z. Gao, and H. Li: The interaction between desferrioxamine and hemin: A potential toxicological implication. Toxicol. In Vitro 26(5), 732 (2012).
N. Lu, M. Zhang, H. Li, and Z. Gao: Completely different effects of desferrioxamine on hemin/nitrite/H2O2-induced bovine serum albumin nitration and oxidation. Chem. Res. Toxicol. 21(6), 1229 (2008).
W.W. Yu, L. Qu, W. Guo, and X. Peng: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15(14), 2854 (2003).
N. Colthup, L. Daly, and S. Wiberley: Introduction to Infrared and Raman Spectroscopy (Hacourt Brace Jovanovich, 1990), p. 291.
S.W. Han, H.S. Han, and K. Kim: Infrared and Raman spectra of 4-cyanobenzoic acid on powdered silver. Vib. Spectrosc. 21(1–2), 133 (1999).
Y.T. Tao: Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum. J. Am. Chem. Soc. 115(10), 4350 (1993).
S-G. Wang, Q-B. Yang, J. Bai, Y. Song, C-Q. Zhang, and Y-X. Li: Transferring CdTe nanoparticles from liquid phase to polyvinylpyrrolidone nanofibers by electrospinning and detecting its photoluminescence property. Chem. Res. Chin. Univ. 24(4), 459 (2008).
H. Zhang, Z. Zhou, B. Yang, and M. Gao: The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J. Phys. Chem. B 107(1), 8 (2003).
D. Huang, F. Geng, Y. Liu, X. Wang, J. Jiao, and L. Yu: Biomimetic interactions of proteins with functionalized cadmium sulfide quantum dots. Colloids Surf., A 392(1), 191 (2011).
Q. Xiao, S. Huang, Z-D. Qi, B. Zhou, Z-K. He, and Y. Liu: Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim. Biophys. Acta 1784(7), 1020 (2008).
J. Peng, S. Liu, S. Yan, X. Fan, and Y. He: A study on the interaction between CdTe quantum dots and chymotrypsin using optical spectroscopy. Colloids Surf., A 359, 13 (2010).
L. Chen, X. Zhang, C. Zhang, G. Zhou, W. Zhang, D. Xiang, Z. He, and H. Wang: Dual-color fluorescence and homogeneous immunoassay for the determination of human enterovirus 71. Anal. Chem. 83, 7316 (2011).
S. Comby and T. Gunnlaugsson: Luminescent lanthanide-functionalized gold nanoparticles: Exploiting the interaction with bovine serum albumin for potential sensing applications. ACS Nano. 5(9), 7184 (2011).
B.Y. Mikhail and S. Achilefu: Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641 (2010).
J.R. Lakowicz: Principles of Fluorescence Spectroscopy (Springer, New York, NY, 2009).
H.M.E. Azzazy, M.M.H. Mansour, and S.C. Kazmierczak: From diagnostics to therapy: Prospects of quantum dots. Clin. Biochem. 40(13–14), 917 (2007).
L. Stryer: Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819 (1978).
T. Pons and H. Mattoussi: Investigating biological processes at the single molecule level using luminescent quantum dots. Ann. Biomed. Eng. 37(10), 1934 (2009).
J.F. Sun, C.L. Ren, L.H. Liu, and X.G. Chen: CdTe quantum dots as fluorescence sensor for the determination of vitamin B6 in aqueous solution. Chin. Chem. Lett. 19(7), 855 (2008).
ACKNOWLEDGMENTS
The authors are grateful for the financial support from National Major Scientific Instruments and Equipments Development Special Funds (Grant No. 2011YQ030113), National Natural Science Foundation of China (Grant No. 21275105), National Recruitment Program of Global Experts (NRPGE), the Hundred Talents Program of Sichuan Province (HTPSP), and the Startup Funding of Sichuan University for setting up the Research Center of Analytical Instrumentation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yao, J., Yang, M. & Duan, Y. Highly fluorescent CdTe nanocrystals: Synthesis, characterization, property, mechanism, and application as a sensor for biomolecule analysis. Journal of Materials Research 29, 633–640 (2014). https://doi.org/10.1557/jmr.2014.25
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2014.25