Skip to main content
Log in

Coupling of magnetism and structural phase transitions by interfacial strain

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Proximity effects and exchange coupling across interfaces of hybrid magnetic heterostructures present unique opportunities for functional material design. In this review, we present an overview of recent experiments on magnetic hybrid materials in which magnetism was controlled by proximity to an active material. In particular, we discuss interfacial strain coupling of ferromagnetic materials in contact with a material undergoing a structural deformation. Bilayers containing VO2 and V2O3 as active materials are shown to strongly affect the magnetization and coercivity of ferromagnetic materials due to stress anisotropy caused by a temperature-dependent structural displacement in the oxide. The possibilities of tuning the system by sample morphology and materials choice are discussed in detail. In addition, we highlight a length-scale competition between magnetic and structural domains which leads to a maximum change in the coercivity in a narrow temperature window of the vanadium oxide phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15

Similar content being viewed by others

References

  1. J.T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S.Y. Yang, D. E. Nikonov, Y.H. Chu, S. Salahuddin, and R. Ramesh: Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).

    Article  CAS  Google Scholar 

  2. V. Laukhin, V. Skumryev, X. Martí, D. Hrabovsky, F. Sánchez, M. V. García-Cuenca, C. Ferrater, M. Varela, U. Lüders, J.F. Bobo, and J. Fontcuberta: Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 97, 227201 (2006).

    Article  CAS  Google Scholar 

  3. M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, and A. Fert: Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296 (2007).

    Article  CAS  Google Scholar 

  4. R.O. Cherifi, V. Ivanovskaya, L.C. Phillips, A. Zobelli, I.C. Infante, E. Jacquet, V. Garcia, S. Fusil, P.R. Briddon, N. Guiblin, A. Mougin, A.A. Ünal, F. Kronast, S. Valencia, B. Dkhil, A. Barthélémy, and M. Bibes: Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345 (2014).

    Article  CAS  Google Scholar 

  5. J.S. Kouvel and R.H. Wilson: Magnetization of iron‐nickel alloys under hydrostatic pressure. J. Appl. Phys. 32, 435 (1961).

    Article  CAS  Google Scholar 

  6. E. Tatsumoto, H. Fujiwara, H. Tange, and Y. Kato: Pressure dependence of the intrinsic magnetization of iron and nickel. Phys. Rev. 128, 2179 (1962).

    Article  CAS  Google Scholar 

  7. J.S. Kouvel and C.C. Hartelius: Pressure dependence of the magnetization of cobalt. J. Appl. Phys. 35, 940 (1964).

    Article  CAS  Google Scholar 

  8. A. Kirilyuk, A.V. Kimel, and T. Rasing: Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731 (2010).

    Article  Google Scholar 

  9. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani: Electric-field control of ferromagnetism. Nature 408, 944 (2000).

    Article  CAS  Google Scholar 

  10. C.A.F. Vaz: Electric field control of magnetism in multiferroic heterostructures. J. Phys.: Condens. Matter 24, 333201 (2012).

    CAS  Google Scholar 

  11. A. Chernyshov, M. Overby, X. Liu, J.K. Furdyna, Y. Lyanda-Geller, and L.P. Rokhinson: Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat. Phys. 5, 656 (2009).

    Article  CAS  Google Scholar 

  12. L. Berger: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996).

    Article  CAS  Google Scholar 

  13. M. Tsoi, A.G.M. Jansen, J. Bass, W.C. Chiang, M. Seck, V. Tsoi, and P. Wyder: Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281 (1998).

    Article  CAS  Google Scholar 

  14. J.C. Slonczewski: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1 (1996).

    Article  CAS  Google Scholar 

  15. I. Zutic, J. Fabian, and S. Das Sarma: Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).

    Article  CAS  Google Scholar 

  16. R.L. Stamps: Dynamic magnetic properties of ferroic films, multilayers, and patterned elements. Adv. Funct. Mater. 20, 2380 (2010).

    Article  CAS  Google Scholar 

  17. W. Eerenstein, N.D. Mathur, and J.F. Scott: Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).

    Article  CAS  Google Scholar 

  18. R. Ramesh and N.A. Spaldin: Multiferroics: Progress and prospects in thin films. Nat. Mater. 6, 21 (2007).

    Article  CAS  Google Scholar 

  19. E.A. Eliseev, A.N. Morozovska, M.D. Glinchuk, B.Y. Zaulychny, V.V. Skorokhod, and R. Blinc: Surface-induced piezomagnetic, piezoelectric, and linear magnetoelectric effects in nanosystems. Phys. Rev. B 82, 085408 (2010).

    Article  CAS  Google Scholar 

  20. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J-M. Triscone: Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141 (2011).

    Article  CAS  Google Scholar 

  21. J.P. Velev, P.A. Dowben, E.Y. Tsymbal, S.J. Jenkins, and A. N. Caruso: Interface effects in spin-polarized metal/insulator layered structures. Surf. Sci. Rep. 63, 400 (2008).

    Article  CAS  Google Scholar 

  22. J.M. Rondinelli and N.A. Spaldin: Structure and properties of functional oxide thin Films: Insights from electronic-structure calculations. Adv. Mater. 23, 3363 (2011).

    Article  CAS  Google Scholar 

  23. J.P. Velev, S.S. Jaswal, and E.Y. Tsymbal: Multi-ferroic and magnetoelectric materials and interfaces. Philos. Trans. R. Soc., A 369, 3069 (2011).

    Article  CAS  Google Scholar 

  24. M.N. Baibich, J.M. Broto, A. Fert, F.N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988).

    Article  CAS  Google Scholar 

  25. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828 (1989).

    Article  CAS  Google Scholar 

  26. G.A. Prinz: Magnetoelectronics. Science 282, 1660 (1998).

    Article  CAS  Google Scholar 

  27. J. Nogués and I.K. Schuller: Exchange bias. J. Magn. Magn. Mater. 192, 203 (1999).

    Article  Google Scholar 

  28. A.E. Berkowitz and K. Takano: Exchange anisotropy–A review. J. Magn. Magn. Mater. 200, 552 (1999).

    Article  CAS  Google Scholar 

  29. R.L. Stamps: Mechanisms for exchange bias. J. Phys. D: Appl. Phys. 33, R247 (2000).

    Article  CAS  Google Scholar 

  30. M. Kiwi: Exchange bias theory. J. Magn. Magn. Mater. 234, 584 (2001).

    Article  CAS  Google Scholar 

  31. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M.D. Baró: Exchange bias in nanostructures. Phys. Rep. 422, 65 (2005).

    Article  Google Scholar 

  32. N.A. Hill: Why are there so few magnetic ferroelectrics?. J. Phys. Chem. B 104, 6694 (2000).

    Article  CAS  Google Scholar 

  33. F. Manfred: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 (2005).

    Article  CAS  Google Scholar 

  34. D.I. Khomskii: Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1 (2006).

    Article  CAS  Google Scholar 

  35. D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno: Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943 (2003).

    Article  CAS  Google Scholar 

  36. L.P. Rokhinson, M. Overby, A. Chernyshov, Y. Lyanda-Geller, X. Liu, and J.K. Furdyna: Electrical control of ferromagnetic state. J. Magn. Magn. Mater. 324, 3379 (2012).

    Article  CAS  Google Scholar 

  37. Y-H. Chu, L.W. Martin, M.B. Holcomb, and R. Ramesh: Controlling magnetism with multiferroics. Mater. Today 10, 16 (2007).

    Article  CAS  Google Scholar 

  38. S.M. Wu, S.A. Cybart, P. Yu, M.D. Rossell, J.X. Zhang, R. Ramesh, and R.C. Dynes: Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756 (2010).

    Article  CAS  Google Scholar 

  39. V. Skumryev, V. Laukhin, I. Fina, X. Martí, F. Sánchez, M. Gospodinov, and J. Fontcuberta: Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys. Rev. Lett. 106, 057206 (2011).

    Article  CAS  Google Scholar 

  40. P. Borisov, A. Hochstrat, X. Chen, W. Kleemann, and C. Binek: Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005).

    Article  CAS  Google Scholar 

  41. X. He, Y. Wang, N. Wu, A.N. Caruso, E. Vescovo, K. D. Belashchenko, P.A. Dowben, and C. Binek: Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579 (2010).

    Article  CAS  Google Scholar 

  42. A.J. Freeman and R-Q. Wu: Electronic structure theory of surface, interface and thin-film magnetism. J. Magn. Magn. Mater. 100, 497 (1991).

    Article  CAS  Google Scholar 

  43. T.M. Hattox, J.B. Conklin, Jr., J.C. Slater, and S.B. Trickey: Calculation of the magnetization and total energy of vanadium as a function of lattice parameter. J. Phys. Chem. Solids 34, 1627 (1973).

    Article  CAS  Google Scholar 

  44. C. Chappert, A. Fert, and F.N.V. Dau: The emergence of spin electronics in data storage. Nat. Mater. 6, 813 (2007).

    Article  CAS  Google Scholar 

  45. C. Kittel: Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21, 541 (1949).

    Article  Google Scholar 

  46. E.W. Lee: Magnetostriction and magnetomechanical effects. Rep. Prog. Phys. 18, 184 (1955).

    Article  Google Scholar 

  47. E. Dagotto, T. Hotta, and A. Moreo: Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep. 344, 1 (2001).

    Article  CAS  Google Scholar 

  48. A.J. Millis: Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147 (1998).

    Article  CAS  Google Scholar 

  49. K. Dörr: Ferromagnetic manganites: Spin-polarized conduction versus competing interactions. J. Phys. D: Appl. Phys. 39, R125 (2006).

    Article  CAS  Google Scholar 

  50. A.M. Haghiri-Gosnet and J.P. Renard: CMR manganites: Physics, thin films and devices. J. Phys. D: Appl. Phys. 36, R127 (2003).

    Article  CAS  Google Scholar 

  51. C. Thiele, K. Dörr, O. Bilani, J. Rödel, and L. Schultz: Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr,Ca). Phys. Rev. B 75, 054408 (2007).

    Article  CAS  Google Scholar 

  52. G. Srinivasan, E.T. Rasmussen, B.J. Levin, and R. Hayes: Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B 65, 134402 (2002).

    Article  CAS  Google Scholar 

  53. M.K. Lee, T.K. Nath, C.B. Eom, M.C. Smoak, and F. Tsui: Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate. Appl. Phys. Lett. 77, 3547 (2000).

    Article  CAS  Google Scholar 

  54. W. Eerenstein, M. Wiora, J.L. Prieto, J.F. Scott, and N.D. Mathur: Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6, 348 (2007).

    Article  CAS  Google Scholar 

  55. A. Brandlmaier, S. Geprägs, M. Weiler, A. Boger, M. Opel, H. Huebl, C. Bihler, M.S. Brandt, B. Botters, D. Grundler, R. Gross, and S.T.B. Goennenwein: In situ manipulation of magnetic anisotropy in magnetite thin films. Phys. Rev. B 77, 104445 (2008).

    Article  CAS  Google Scholar 

  56. C-G. Duan, S.S. Jaswal, and E.Y. Tsymbal: Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).

    Article  CAS  Google Scholar 

  57. S. Sahoo, S. Polisetty, C-G. Duan, S.S. Jaswal, E.Y. Tsymbal, and C. Binek: Ferroelectric control of magnetism in BaTiO3/Fe heterostructures via interface strain coupling. Phys. Rev. B 76, 092108 (2007).

    Article  CAS  Google Scholar 

  58. M. Weiler, A. Brandlmaier, S. Geprägs, M. Althammer, M. Opel, C. Bihler, H. Huebl, M.S. Brandt, R. Gross, and S.T.B. Goennenwein: Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature. New J. Phys. 11, 013021 (2009).

    Article  CAS  Google Scholar 

  59. S. Geprägs, A. Brandlmaier, M. Opel, R. Gross, and S.T.B. Goennenwein: Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures. Appl. Phys. Lett. 96, 142509 (2010).

    Article  CAS  Google Scholar 

  60. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh: Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661 (2004).

    Article  CAS  Google Scholar 

  61. H.P. Wu, G.Z. Chai, T. Zhou, Z. Zhang, T. Kitamura, and H. M. Zhou: Adjustable magnetoelectric effect of self-assembled vertical multiferroic nanocomposite films by the in-plane misfit strain and ferromagnetic volume fraction. J. Appl. Phys. 115, 9 (2014).

    Article  CAS  Google Scholar 

  62. J. de la Venta, S. Wang, J.G. Ramirez, and I.K. Schuller: Control of magnetism across metal to insulator transitions. Appl. Phys. Lett. 102, 122404 (2013).

    Article  CAS  Google Scholar 

  63. J. de la Venta, S. Wang, T. Saerbeck, J.G. Ramírez, I. Valmianski, and I.K. Schuller: Coercivity enhancement in V2O3/Ni bilayers driven by nanoscale phase coexistence. Appl. Phys. Lett. 104, 062410 (2014).

    Article  CAS  Google Scholar 

  64. M. Imada, A. Fujimori, and Y. Tokura: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).

    Article  CAS  Google Scholar 

  65. M. Yethiraj: Pure and doped vanadium sesquioxide: A brief experimental review. J. Solid State Chem. 88, 53 (1990).

    Article  CAS  Google Scholar 

  66. J. Brockman, M.G. Samant, K.P. Roche, and S.S.P. Parkin: Substrate-induced disorder in V2O3 thin films grown on annealed c-plane sapphire substrates. Appl. Phys. Lett. 101, 051606 (2012).

    Article  CAS  Google Scholar 

  67. N.F. Mott: Metal-insulator transition. Rev. Mod. Phys. 40, 677 (1968).

    Article  CAS  Google Scholar 

  68. N.F. Mott: Continuous and discontinuous metal-insulator transitions. Philos. Mag. Part B 37, 377 (1978).

    Article  CAS  Google Scholar 

  69. R.M. Moon: Antiferromagnetism in V2O3. Phys. Rev. Lett. 25, 527 (1970).

    Article  CAS  Google Scholar 

  70. W. Bao, C. Broholm, G. Aeppli, S.A. Carter, P. Dai, T. F. Rosenbaum, J.M. Honig, P. Metcalf, and S.F. Trevino: Magnetic correlations and quantum criticality in the insulating antiferromagnetic, insulating spin liquid, renormalized fermi liquid, and metallic antiferromagnetic phases of the Mott system V2O3. Phys. Rev. B 58, 12727 (1998).

    Article  CAS  Google Scholar 

  71. C.H. Griffiths and H.K. Eastwood: Influence of stoichiometry on the metal‐semiconductor transition in vanadium dioxide. J. Appl. Phys. 45, 2201 (1974).

    Article  CAS  Google Scholar 

  72. G. Andersson: Studies on vanadium oxides. II. The crystal structure of vanadium oxide. Acta Chem. Scand. 10, 623 (1956).

    Article  CAS  Google Scholar 

  73. G. Andersson: Studies on vanadium oxides. Acta Chem. Scand. 8, 1599 (1954).

    Article  CAS  Google Scholar 

  74. B.D. Cullity and C.D. Graham: Introduction to Magnetic Materials (John Wiley and Sons, Hoboken, New Jersey, 2009).

    Google Scholar 

  75. B. Viswanath, C. Ko, and S. Ramanathan: Thermoelastic switching with controlled actuation in VO2 thin films. Scr. Mater. 64, 490 (2011).

    Article  CAS  Google Scholar 

  76. T-H. Yang, R. Aggarwal, A. Gupta, H. Zhou, R.J. Narayan, and J. Narayan: Semiconductor-metal transition characteristics of VO2 thin films grown on c- and r-sapphire substrates. J. Appl. Phys. 107, 053514 (2010).

    Article  CAS  Google Scholar 

  77. Y. Zhao, J. Hwan Lee, Y. Zhu, M. Nazari, C. Chen, H. Wang, A. Bernussi, M. Holtz, and Z. Fan: Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates. J. Appl. Phys. 111, 053533 (2012).

    Article  CAS  Google Scholar 

  78. M.M. Qazilbash, A. Tripathi, A.A. Schafgans, B-J. Kim, H-T. Kim, Z. Cai, M.V. Holt, J.M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov: Nanoscale imaging of the electronic and structural transitions in vanadium dioxide. Phys. Rev. B 83, 165108 (2011).

    Article  CAS  Google Scholar 

  79. D.B. McWhan and J.P. Remeika: Metal-insulator transition in (V(1-x)Crx)2O3. Phys. Rev. B 2, 3734 (1970).

    Article  Google Scholar 

  80. D.V. Dimitrov, S. Zhang, J.Q. Xiao, G.C. Hadjipanayis, and C. Prados: Effect of exchange interactions at antiferromagnetic/ferromagnetic interfaces on exchange bias and coercivity. Phys. Rev. B 58, 12090 (1998).

    Article  CAS  Google Scholar 

  81. T.C. Schulthess and W.H. Butler: Coupling mechanisms in exchange biased films (invited). J. Appl. Phys. 85, 5510 (1999).

    Article  CAS  Google Scholar 

  82. C. Leighton, J. Nogués, B.J. Jönsson-Åkerman, and I.K. Schuller: Coercivity enhancement in exchange biased systems driven by interfacial magnetic frustration. Phys. Rev. Lett. 84, 3466 (2000).

    Article  CAS  Google Scholar 

  83. B. Sass, S. Buschhorn, W. Felsch, D. Schmitz, and P. Imperia: Thin layers of Fe, Co and Ni on V2O3 (11-20) and V2O3(0001): A comparison of the interfacial magnetic interactions. J. Magn. Magn. Mater. 303, 167 (2006).

    Article  CAS  Google Scholar 

  84. M.R. Fitzsimmons, P. Yashar, C. Leighton, I.K. Schuller, J. Nogues, C.F. Majkrzak, and J.A. Dura: Asymmetric magnetization reversal in exchange-biased hysteresis loops. Phys. Rev. Lett. 84, 3986 (2000).

    Article  CAS  Google Scholar 

  85. F. Radu, M. Etzkorn, R. Siebrecht, T. Schmitte, K. Westerholt, and H. Zabel: Interfacial domain formation during magnetization reversal in exchange-biased CoO/Co bilayers. Phys. Rev. B 67, 134409 (2003).

    Article  CAS  Google Scholar 

  86. Z-P. Li, J. Eisenmenger, C.W. Miller, and I.K. Schuller: Anomalous spontaneous reversal in magnetic heterostructures. Phys. Rev. Lett. 96, 137201 (2006).

    Article  CAS  Google Scholar 

  87. A. Paul, C. Schmidt, N. Paul, A. Ehresmann, S. Mattauch, and P. Böni: Symmetric magnetization reversal in polycrystalline exchange coupled systems via simultaneous processes of coherent rotation and domain nucleation. Phys. Rev. B 86, 094420 (2012).

    Article  CAS  Google Scholar 

  88. P.K. Manna and S.M. Yusuf: Two interface effects: Exchange bias and magnetic proximity. Phys. Rep. 535, 61 (2014).

    Article  Google Scholar 

  89. S. Guénon, S. Scharinger, W. Siming, J.G. Ramírez, D. Koelle, R. Kleiner, and K.S. Ivan: Electrical breakdown in a V2O3 device at the insulator-to-metal transition. Europhys. Lett. 101, 57003 (2013).

    Article  CAS  Google Scholar 

  90. A. Sharoni, J.G. Ramírez, and I.K. Schuller: Multiple avalanches across the metal-insulator transition of vanadium oxide nanoscaled junctions. Phys. Rev. Lett. 101, 026404 (2008).

    Article  CAS  Google Scholar 

  91. M.M. Qazilbash, M. Brehm, B-G. Chae, P-C. Ho, G.O. Andreev, B-J. Kim, S.J. Yun, A.V. Balatsky, M.B. Maple, F. Keilmann, H-T. Kim, and D.N. Basov: Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750 (2007).

    Article  CAS  Google Scholar 

  92. NIST, OOMMF: See http://math.nist.gov/oommf for software code and description. (Page accessed March 2014).

Download references

ACKNOWLEDGMENTS

The magnetism aspects of this work were supported by the Office of Basic Energy Science, U.S. Department of Energy, BES-DMS funded by the Department of Energy’s Office of Basic Energy Science, DMR under grant DE FG03 87ER-45332 and the oxide related science by the AFOSR (Grant No. FA9550-12-1-0381).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Saerbeck.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saerbeck, T., de la Venta, J., Wang, S. et al. Coupling of magnetism and structural phase transitions by interfacial strain. Journal of Materials Research 29, 2353–2365 (2014). https://doi.org/10.1557/jmr.2014.253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.253

Navigation