Skip to main content
Log in

Influence of temperature on the spark plasma sintering of calcium fluoride ceramics

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The commercially abundant low purity calcium fluoride powder was directly loaded for spark plasma sintering (SPS). In a vacuum atmosphere with a constant pressure held at 70 MPa the sintering temperature was systematically varied in the range of 500–850 °C. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) techniques were used to characterize the raw powder; and for studying the microstructural properties and in-line transmittance of the finalized ceramics, SEM and Fourier transform infrared spectroscopy (FTIR) were used. Digital images of the 700 °C sintered translucent CaF2 ceramic were taken along with transmittance recordings. The grain growth mechanisms and activation energy values were determined; and the influences of temperature on the relative density, grain size, and optical transmittance were demonstrated. Furthermore, for the first time, a plausible predominant mechanism was proposed for describing the different sintering stages of calcium fluoride ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. A. Lyberis, A.J. Stevenson, A. Suganuma, S. Ricaud, F. Druon, F. Herbst, D. Vivien, P. Gredin, and M. Mortier: Effect of Yb3+ concentration on optical properties of Yb:CaF2 transparent ceramics. Opt. Mater. 34, 965 (2012).

    Article  CAS  Google Scholar 

  2. A. Lyberis, G. Patriarche, P. Gredin, D. Vivien, and M. Mortier: Origin of light scattering in ytterbium doped calcium fluoride transparent ceramic for high power lasers. J. Eur. Ceram. Soc. 31, 1619 (2011).

    Article  CAS  Google Scholar 

  3. P. Aubry, A. Bensalah, P. Gredin, G. Patriarche, D. Vivien, and M. Mortier: Synthesis and optical characterizations of Yb-doped CaF2 ceramics. Opt. Mater. 31, 750 (2009).

    Article  CAS  Google Scholar 

  4. J. Šulc, M.E. Doroschenko, H. Jelínková, T.T. Basiev, V.A. Konyushkin, and V.V. Osiko: Tunability of laser based on Yb-doped hot-pressed CaF2 ceramics. Proc. SPIE 8433, 84331 (2012).

    Article  Google Scholar 

  5. P. Samuel, H. Ishizawa, Y. Ezura, K.I. Ueda, and S.M. Babu: Spectroscopic analysis of Eu doped transparent CaF2 ceramics at different concentration. Opt. Mater. 33, 735 (2011).

    Article  CAS  Google Scholar 

  6. J. Lucas, F. Smektala, and J.L. Adam: Fluorine in optics. J. Fluorine Chem. 114, 113 (2002).

    Article  CAS  Google Scholar 

  7. G. Blasse: Scintillator materials. Chem. Mater. 6, 1465 (1994).

    Article  CAS  Google Scholar 

  8. R.P. Madding: IR window transmittance temperature dependence. Proc. of InfraMation, ITC 104 A 2004-07-27.

  9. Y.T. Viday, B.V. Grinyov, L.B. Zagarij, N.D. Zverev, V.V. Chernikov, V.A. Tarasov, and A.M. Kudin: Research and development of ceramic scintillators applied to alpha-particle detection. IEEE Nucl. Sci. Symp. Med. Imaging Conf. 2, 762 (1995).

    Google Scholar 

  10. T.T. Basiev, M.E. Doroshenko, V.A. Konyushkin, V.V. Osiko, P.P. Fedorov, V.A. Demidenko, K.V. Dukel´skii, I.A. Mironov, and A.N. Smirnov: Fluoride optical nanoceramics. Russ. Chem. Bull. 57, 877 (2008).

    Article  CAS  Google Scholar 

  11. S.E. Hatch, W.F. Parsons, and R.J. Weagley: Hot-pressed polycrystalline CaF2: Dy2+ laser. Appl. Phys. Lett. 5, 153 (1964).

    Article  CAS  Google Scholar 

  12. E.B. Allison and P. Murray: A fundamental investigation of the mechanism of sintering. Acta Metall. 2, 487 (1954).

    Article  CAS  Google Scholar 

  13. J.E. Burke: Recrystallization and sintering in ceramics. Sintering Key Papers, 1990, p. 17.

  14. B. Kim, K. Hiraga, K. Morita, and H. Yoshida: Spark plasma sintering of transparent alumina. Scr. Mater. 57, 607 (2007).

    Article  CAS  Google Scholar 

  15. S. Chen and Y. Wu: New opportunities for transparent ceramics. Am. Ceram. Soc. Bull. 92, 32 (2013).

    CAS  Google Scholar 

  16. L.A. Boatner, J.S. Neal, G. Jellison, J.O. Ramey, A. North, M. Wisniewska, A.E. Payzant, J.Y. Howe, A. Lempicki, C. Brecher, and J. Glodo: Development of novel polycrystalline ceramic scintillators. IEEE Trans. Nucl. Sci. 55, 1501 (2008).

    Article  Google Scholar 

  17. M.N. Rahaman: Ceramic Processing and Sintering (Marcel Dekker, New York, 2003), pp. 540–619.

    Google Scholar 

  18. K. Lu: Sintering of nanoceramics. Int. Mater. Rev. 53, 21 (2008).

    Article  CAS  Google Scholar 

  19. R. Orru, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao: Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng., R 63, 127 (2009).

    Article  Google Scholar 

  20. W.D. Kingery and M. Berg: Study of the initial stages of sintering solids by viscous flow, evaporation condensation, and self-diffusion. J. Appl. Phys. 26, 1205 (1955).

    Article  CAS  Google Scholar 

  21. P.P. Fedorov, V.V. Osiko, S.V. Kuznetsov, and E.A. Garibin: Fluoride laser nanoceramics. J. Phys.: Conf. Ser. 345, 012017 (2012).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge the Air Force Office of Scientific Research (AFOSR) (Contract FA9550-10-1-0067) for funding and supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiquan Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Wu, Y. Influence of temperature on the spark plasma sintering of calcium fluoride ceramics. Journal of Materials Research 29, 2297–2302 (2014). https://doi.org/10.1557/jmr.2014.222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.222

Navigation