Skip to main content

Advertisement

Log in

Anomalously high density and thermal stability of nanotwins in Ni(W) thin films: Quantitative analysis by x-ray diffraction

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Magnetron-sputtered Ni(W) films appear to possess a high density of nanotwins oriented parallel to the film surface which highly influences the properties of Ni(W) films. A sophisticated analysis method for describing the stacking sequence of close-packed atomic layers by statistical parameters has been developed which is based on the evaluation of intensity streaks in reciprocal space measured by (x-ray) synchrotron diffraction. In particular, the degree of hexagonality introduced by twinning into these ideally face-centered cubic-stacked films can be quantified. The validity of the proposed analysis has been confirmed by direct observation of the stacking sequences of close-packed layers using (high-resolution) transmission electron microscopy. It has been shown that the degree of hexagonality in the as-deposited state is practically proportional to the W content. Further, the thermal stability of the nanotwins increases with increasing W content which can be understood by the appearance of hexagonal close-packed-like domains exhibiting an intrinsic thermodynamic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. H. Gleiter: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2000).

    Article  CAS  Google Scholar 

  2. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).

    Article  CAS  Google Scholar 

  3. Y. Kuru, M. Wohlschloegel, U. Welzel, and E.J. Mittemeijer: Crystallite size dependence of the coefficient of thermal expansion of metals. Appl. Phys. Lett. 90, 243113 (2007).

    Article  Google Scholar 

  4. G.K. Rane, U. Welzel, S.R. Meka, and E.J. Mittemeijer: Non-monotonic lattice parameter variation with crystallite size in nanocrystalline solids. Acta Mater. 61, 4524 (2013).

    Article  CAS  Google Scholar 

  5. A.R. Jones, J. Hamann, A.C. Lund, and C.A. Schuh: Nanocrystalline Ni-W alloy coating for engineering applications. Plat. Surf. Finish. 97(4), 52 (2010).

    CAS  Google Scholar 

  6. T. Yamasaki: High-strength nanocrystalline Ni-W alloys produced by electrodeposition and their embrittlement behaviors during grain growth. Scr. Mater. 44, 1497 (2001).

    Article  CAS  Google Scholar 

  7. C.A. Schuh, T.G. Nieh, and H. Iwasaki: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431 (2003).

    Article  CAS  Google Scholar 

  8. A. Chianpairot, G. Lothongkum, C.A. Schuh, and Y. Boonyongmaneerat: Corrosion of nanocrystalline Ni-W alloys in alkaline and acidic 3.5 wt.% NaCl solutions. Corros. Sci. 53, 1066 (2011).

    Article  CAS  Google Scholar 

  9. C. Borgia, T. Scharowsky, A. Furrer, C. Solenthaler, and R. Spolenak: A combinatorial study on the influence of elemental composition and heat treatment on the phase composition, microstructure and mechanical properties of Ni-W alloy thin films. Acta Mater. 59, 386 (2011).

    Article  CAS  Google Scholar 

  10. T.J. Rupert, J.C. Trenkle, and C.A. Schuh: Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 59, 1619 (2011).

    Article  CAS  Google Scholar 

  11. U. Welzel, J. Kuemmel, E. Bischoff, S. Kurz, and E.J. Mittemeijer: Nanoscale planar faulting in nanocrystalline Ni-W thin films: Grain growth, segregation, and residual stress. J. Mater. Res. 26, 2558 (2011).

    Article  CAS  Google Scholar 

  12. S.J.B. Kurz, C. Ensslen, U. Welzel, A. Leineweber, and E.J. Mittemeijer: The thermal stability of Ni-Mo and Ni-W thin films: Solute segregation and planar faults. Scr. Mater. 69, 65 (2013).

    Article  CAS  Google Scholar 

  13. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).

    Article  CAS  Google Scholar 

  14. X. Zhang, O. Anderoglu, R.G. Hoagland, and A. Misra: Nanoscale growth twins in sputtered metal films. JOM 60, 75 (2008).

    Article  CAS  Google Scholar 

  15. C.J. Shute, B.D. Myers, S. Xie, S.Y. Li, T.W. Barbee, Jr., A.M. Hodge, and J.R. Weertman: Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins. Acta Mater. 59, 4569 (2011).

    Article  CAS  Google Scholar 

  16. S.J.B. Kurz, S.B. Maisel, A. Leineweber, M. Höfler, S. Müller, and E.J. Mittemeijer: Discovery of a thermally persistent h.c.p. solid-solution phase in the Ni-W system. J. Appl. Phys. (to be published).

  17. J.M. Cowley and A.Y. Au: Diffraction by crystals with planar faults. III. Structure analyses using microtwins. Acta Crystallogr., Sect. A 34, 738 (1978).

    Article  Google Scholar 

  18. H. Jagodzinski and E. Hellner: Die eindimensionale Phasenumwandlung des RhSn2. Z. Kristallogr. — Cryst. Mater. 107, 124 (1956).

    Article  CAS  Google Scholar 

  19. B.E. Warren: X-ray Diffraction (Addison-Wesley, Reading, MA, 1969).

    Google Scholar 

  20. L. Velterop, R. Delhez, T.H. de Keijser, E.J. Mittemeijer, and D. Reefman: X-ray diffraction analysis of stacking and twin faults in f.c.c. metals: A revision and allowance for texture and non-uniform fault probabilities. J. Appl. Crystallogr. 33, 296 (2000).

    Article  CAS  Google Scholar 

  21. L. Balogh, G. Ribarik, and T. Ungar: Stacking faults and twin boundaries in fcc crystals determined by x-ray diffraction profile analysis. J. Appl. Phys. 100, 023512 (2006).

    Article  Google Scholar 

  22. E. Estevez-Rams, U. Welzel, A.P. Madrigal, and E.J. Mittemeijer: Stacking and twin faults in close-packed crystal structures: Exact description of random faulting statistics for the full range of faulting probabilities. Acta Crystallogr., Sect. A 64, 537 (2008).

    Article  CAS  Google Scholar 

  23. A.J.C. Wilson: Imperfections in the structure of cobalt II. Mathematical treatment of proposed structure. Proc. R. Soc. London, Ser. A 180, 277 (1942).

    Article  CAS  Google Scholar 

  24. S. Hendricks and E. Teller: X-ray interference in partially ordered layer lattices. J. Chem. Phys. 10, 147 (1942).

    Article  CAS  Google Scholar 

  25. G. Csiszar, L. Balogh, A. Misra, X.H. Zhang, and T. Ungar: The dislocation density and twin-boundary frequency determined by x-ray peak profile analysis in cold rolled magnetron-sputter deposited nanotwinned copper. J. Appl. Phys. 110, 043502 (2011).

    Article  Google Scholar 

  26. L. Velterop, R. Delhez, T.H. De Keijser, E.J. Mittemeijer, and D. Reefman: Microstructure and stresses in thin alloy layers before and after precipitation. Dissertation of L. Velterop, Delft University of Technology, Delft, The Netherlands, 2000; pp. 35.

    Google Scholar 

  27. D.M. Moore and R.C. Reynolds: X-Ray Diffraction and the Identification and Analysis of Clay Minerals (Oxford University Press, Inc., New York, NY, 1997).

    Google Scholar 

  28. K. Ufer, R. Kleeberg, J. Bergmann, and R. Dohrmann: Rietveld refinement of disordered illite-smectite mixed-layer structures by a recursive algorithm. I: One-dimensional patterns. Clays Clay Miner. 60, 507 (2012).

    Article  CAS  Google Scholar 

  29. J. Benedict, R. Anderson, and S.J. Klepeis: Recent developments in the use of the tripod polisher for TEM specimen preparation. MRS Proc. 254, 121 (1991).

    Article  Google Scholar 

  30. A. Stierle, A. Steinhauser, A. Ruhm, F.U. Renner, R. Weigel, N. Kasper, and H. Dosch: Dedicated Max-Planck beamline for the in situ investigation of interfaces and thin films. Rev. Sci. Instrum. 75, 5302 (2004).

    Article  CAS  Google Scholar 

  31. M. Leoni, A.F. Gualtieri, and N. Roveri: Simultaneous refinement of structure and microstructure of layered materials. J. Appl. Crystallogr. 37, 166 (2004).

    Article  CAS  Google Scholar 

  32. M.M.J. Treacy, J.M. Newsam, and M.W. Deem: A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. London, Ser. A 433, 499 (1991).

    Article  Google Scholar 

  33. U. Müller: Anorganische Strukturchemie (Vieweg + Teubner Verlag, Wiesbaden, Germany, 2008).

    Google Scholar 

  34. A. Klenke: Probability Theory (Springer-Verlag, London, 2014).

    Book  Google Scholar 

  35. J.P. Hirth and J. Lothe: Theory of Dislocations (Wiley, New York, 1982).

    Google Scholar 

  36. H. Suzuki: Segregation of solute atoms to stacking faults. J. Phys. Soc. Jpn. 17, 322 (1962).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the allotted beamtime at ESRF and ANKA and thank all involved scientists for technical support (Dr. Carsten Bähtz and Dr. Olga Roshchupkina: Rossendorf Beamline, ESRF; Dr. Miguel Mantilla and Dr. Peter Wochner: Surface Diffraction Beamline, ANKA). Moreover, the following employees of the Max Planck Institute for Intelligent Systems are gratefully acknowledged: Mr. Frank Thiele (thin film growth, Central Scientific Facility ‘Thin Films’); Mrs. Ute Salzberger (TEM sample preparation, Stuttgart Center for Electron Microscopy); and Dr. Ewald Bischoff (TEM investigation). Moreover, the authors thank Mrs. Viola Duppel (HRTEM investigations, Max Planck Institute for Solid State Research) and Dr. Matteo Leoni (University of Trento) for helpful discussions concerning application of the software DIFFaXplus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. B. Kurz.

APPENDIX

APPENDIX

The original fit parameters of the transition matrix describing the stacking sequences in the as-deposited two-phase fcc + hcp films have been gathered in Table A1, as well as the calculated volume fractions and degree of hexagonality.

TABLE A1 Fit parameters of the transition matrix, calculated volume fractions, and degrees of hexagonality of the as-deposited “two-phase” fcc + hcp films. All parameters have been expressed as a percentage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurz, S.J.B., Leineweber, A. & Mittemeijer, E.J. Anomalously high density and thermal stability of nanotwins in Ni(W) thin films: Quantitative analysis by x-ray diffraction. Journal of Materials Research 29, 1642–1655 (2014). https://doi.org/10.1557/jmr.2014.202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.202

Navigation