Skip to main content
Log in

Synergistic effect of binary ligands on nucleation and growth/size effect of nanocrystals: Studies on reusability of the solvent

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An attempt to reduce the effect of major toxic components namely phosphine ligands and unsaturated solvents as being used in conventional nanocrystal synthesis, has been made with a new binary ligand, and a reusable solvent N-octadecane for a smokeless and clean synthesis procedure. The optimized effects of the two ligands oleic acid and octadecyl amine on the nucleation rate and growth of CdSe nanocrystals (NCs) are reported and substantiated by AFM analysis. Oleic acid accelerates particle ripening and nuclei growth, but inhibits nucleation whereas octadecyl amine catalyses nucleation and very gradually improves growth to obtain small stable NCs. Another important feature of the present study is the replacement of 1-octadecene by a competitive N-octadecane as a solvent in such ligand mediated nanocrystal synthesis. The GCMS analysis reports a recovery of 95% of solvent after reuse, thus opening a scope for environmental friendly processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. Z-A. Peng and X. Peng: Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183 (2001).

    Article  CAS  Google Scholar 

  2. L. Qu, Z-A. Peng, and X. Peng: Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1(6), 333 (2001).

    Article  CAS  Google Scholar 

  3. P. Reiss, J. Bleuse, and A. Pron: Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2(7), 781 (2002).

    Article  CAS  Google Scholar 

  4. K. Yu, S. Singh, N. Patrito, and V. Chu: Effect of reaction media on the growth and photoluminescence of colloidal CdSe. Langmuir 20, 11161 (2004).

    Article  CAS  Google Scholar 

  5. W. Li, M. Wang, F. Xie, S. Zhu, and Y. Zhao: Synthesis of nanocrystalline CdS quantum dots via paraffin liquid as solvent and oleic acid as the reacting media. Int. J. Nanosci. 11(6), 1240038 (2010).

    Article  Google Scholar 

  6. X. Liu, Y. Jiang, C. Wang, S. Li, X. Ln, Y. Chen, and H. Zhong: Synthesis and spectrum stability of high quality CdTe quantum dots capped with state group in N-oleylmorpholine solvent. J. Cryst. Growth 312, 2656 (2010).

    Article  CAS  Google Scholar 

  7. W-W. Yu and X. Peng: Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomer. Angew. Chem., Int. Ed. 41(13), 2368 (2002).

    Article  CAS  Google Scholar 

  8. J-V. Embden and P. Mulvaney: Nucleation and growth of CdSe nano crystals in binary ligand system. Langmuir 21, 10226 (2005).

    Article  Google Scholar 

  9. N. Al-Salim, A-G. Young, R-D. Tilley, A. James McQuilan, and J. Xia: Synthesis of CdSeS nanocrystals in coordinating and noncoordinating solvents: Solvents role in evolution of the optical and structural properties. Chem. Mater. 19, 5185 (2007).

    Article  CAS  Google Scholar 

  10. S. Sapra, L. Andrey Rogach, and J. Feldmann: Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil. J. Mater. Chem. 16, 3391 (2006).

    Article  CAS  Google Scholar 

  11. A.L. Washington, II and G.F. Strouse: Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes. J. Am. Chem. Soc. 130, 8916 (2008).

    Article  CAS  Google Scholar 

  12. W-W. Yu, L. Qu, W. Guo, and X. Peng: Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals. Chem. Mater. 15, 2354 (2003).

    Article  Google Scholar 

  13. H-J. Hubschmann: Handbook of GC/MS: Fundamentals and Applications (John Wiley & Sons, Hoboken, NJ, 2009).

    Google Scholar 

  14. J-R. Dyer: Applications of Absorption Spectroscopy of Organic Compounds (Prentice-Hall, Englewood Cliffs, NJ, 1965).

    Google Scholar 

  15. D-L. Pavia, G-M. Lampman, G-S. Kriz, P. Sierra, and L. Shcherbyna: Introduction to Spectroscopy (Cengage Learning, Brooks/Cole, Belmont, 2008).

    Google Scholar 

  16. M.A. Al-Mamun: Study of binary systems of long chain alcohols and acids. J. Am. Oil Chem. Soc. 51, 229 (1974).

    Article  CAS  Google Scholar 

  17. M. Sun and X. Yang: Phosphine free synthesis of high quality CdSe nano crystals in non coordination solvents: “Activating agent” and “nucleating agent” controlled nucleation and growth. J. Phys. Chem. C 113, 8701 (2009).

    Article  CAS  Google Scholar 

  18. M.B. Mohamed, D. Tonti, A. Al-Salman, A. Chemseddine, and M. Chergui: Synthesis of high quality zinc blend CdSe nanocrystals. J. Phys. Chem. B 140, 10533 (2005).

    Article  Google Scholar 

  19. C-B. Murray, C-R. Kagan, and M-G. Bawendi: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545 (2000).

    Article  CAS  Google Scholar 

  20. V. Babentsov, J. Riegler, J. Schneider, O. Ehlert, T. Nann, and M. Fiederle: Deep level defect luminescence in cadmium selenide nanocrystals film. J. Cryst. Growth 280, 508 (2005).

    Article  Google Scholar 

  21. L-G. Vega Macotela, T-V. Torchynska, and J. Douda: Radiative interface state study in CdSe/ZnS quantum dots covered by polymer. J. Mater. Sci. Eng. B 176, 1349 (2011).

    Article  Google Scholar 

  22. J. Jasieniak, C. Bullen, and J-V. Embden: Phosphine free synthesis of CdSe nanocrystals. J. Phys. Chem. B 109, 20665 (2005).

    Article  CAS  Google Scholar 

  23. O. Madelung, U. Rössler, and M. Schulz: II-VI and I-VII compounds; Semimagnetic compounds semiconductors. Landolt-Börnstein Group III Condensed Matter: Numerical Data and Functional Relationships in Science and Technology, Vol. 41 (Springer, Berlin, 1999).

    Google Scholar 

  24. H. Yusuf, W-G. Kim, D. Hoon Lee, Y. Guo, and M.G. Moffitt: Size control of mesoscale aqueous assemblies of quantum dots and block copolymers. Langmuir 23, 868 (2007).

    Article  CAS  Google Scholar 

  25. J-L. Merz, S. Lee, and J-K. Furdyna: Self organised growth, ripening and optical properties of wide bad gap II-VI quantum dots. J. Cryst. Growth 184–185, 228 (1998).

    Google Scholar 

  26. X. Peng, J. Wickham, and A-P. Alivisatos: Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 120, 5343 (1998).

    Article  CAS  Google Scholar 

  27. H-R. Chandan and R. Geetha Balakrishna: Study on precipitation efficiency of solvents in post preparative treatment of nanocrystals. J. Mater. Res. 28, 3003 (2013).

    Article  CAS  Google Scholar 

  28. S. Pillai and R. Krishna Pai: Controlled growth and formation of SAMs investigated by atomic force microscopy. Ultramicroscopy 109, 161–166 (2009).

    Article  CAS  Google Scholar 

  29. S. Pillai and R. Krishna Pai: Effect of lateral morphology formation of polymer blend toward patterning silane-based SAMs using selective dissolution method. Ultramicroscopy 108, 458–464 (2008).

    Article  CAS  Google Scholar 

  30. W. Lu, B. Wang, J. Zeng, X. Wang, S. Zhang, and J-G. Hou: Synthesis of core/shell nanoparticles of Au/CdSe via Au−Cd bialloy precursor. Langmuir 21, 3684 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The author acknowledges MNRE, India for financial support for providing the facility to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Geetha Balakrishna.

Additional information

Supplementary Material

To view supplementary material for this article, please visit http://dx.doi.org/jmr.2014.180.

Electronic Supplementary Material

43578_2014_29141556_MOESM1_ESM.doc

Synergistic Effect of Binary Ligands on Nucleation and Growth /Size Effect of Nanocrystals; Studies on Reusability of the Solvent

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandan, H.R., Saravanan, V., Pai, R.K. et al. Synergistic effect of binary ligands on nucleation and growth/size effect of nanocrystals: Studies on reusability of the solvent. Journal of Materials Research 29, 1556–1564 (2014). https://doi.org/10.1557/jmr.2014.180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.180

Navigation