Skip to main content
Log in

Materials perspective of polymers for additive manufacturing with selective laser sintering

  • Polymer
  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The fundamental factors of polymer powders, their importance for successful selective laser sintering (SLS) processing, and the outstanding position of polyamide 12 (PA12) powders in this connection are presented. Considering key factors, the combination of intrinsic and extrinsic properties necessary to generate a powder likely for SLS application is emphasized. Only a specific combination of indicated points leads to success. This is one reason for fewer materials commercially available to date for SLS application. PA12 and some dry blends based on PA12 are today the materials that are used to generate almost all commercial SLS parts. The specific performance of particular PA12 for SLS processing is unmatched from other polymers so far. Reasons are the precise molecular control of SLS polymers for thermal behavior (enlargement of sintering window) and the open chain structure. This is for generation of sufficient mechanical properties and to induce interlayer bonding of successively sintered layers to reduce anisotropic parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. I. Gibson, D.W. Rosen, and B. Stucker: Additive Manufacturing Technologies — Rapid Prototyping to Direct Digital Manufacturing, 1st ed. (Springer, New York, Berlin, 2010).

    Google Scholar 

  2. N. Hopkinson, R.J.M. Hague, and P.M. Dickens: Rapid Manufacturing–An Industrial Revolution for the Digital Age (Wiley & Sons, New York, 2006).

    Google Scholar 

  3. J. Breuninger, R. Becker, et al. et al.: Generative Fertigung mit Kunststoffen: Konzeption und Konstruktion für Selektives Lasersintern (Springer Verlag, Berlin, Heidelberg, 2013).

    Book  Google Scholar 

  4. H. Dominighaus: Kunststoffe–Eigenschaften und Anwendungen (Springer Verlag, Berlin, Heidelberg, 2012).

    Book  Google Scholar 

  5. M. Schmid and G. Levy: Lasersintermaterialien–aktueller Stand und Entwicklungspotential Fachtagung Additive Fertigung (Lehrstuhl für Kunststofftechnik, Erlangen, Germany, 2009), pp. 43–55.

    Google Scholar 

  6. D. Drummer, D. Rietzel, and F. Kühnlein: Development of a characterization approach for the sintering behaviour of new thermoplastics for selective laser sintering. Phys. Procedia: Proceedings of the LANE. Part B 5, 533–542 (2010).

    Article  CAS  Google Scholar 

  7. M. Schmid, F. Amado, and G. Levy: iCoPP — A New Polyolefin for Additive Manufacturing (SLS). Proceedings of the International Conference on Additive Manufacturing (Loughborough, UK, 2011).

  8. M. Schmidt, D. Pohle, and T. Rechtenwald: Selective laser sintering of PEEK. CIRP Ann. Manuf. Technol. 56(1), 205–208 (2007).

    Article  Google Scholar 

  9. J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs: Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann.-Manuf. Technol. 56(2), 730–759 (2007).

    Article  Google Scholar 

  10. D. Rietzel, M. Drexler, F. Kühnlein, and D. Drummer: Influence of temperature fields on the processing of polymer powders by means of laser and mask sintering technology. In Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, 2011; pp. 252–262.

  11. A. Amado, K. Wegener, and M. Schmid: Characterization and Modeling of Non-Isothermal Crystallization of Polyamide 12 and Co-Polypropylene During the SLS Process, Proceedings of PMI Conference, Ghent (Belgium), 2012.

  12. K. Nakamura, T. Watanabe, K. Katayama, and T. Amano et al.: Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. J. Appl. Polym. Sci. 16(5), 1077–1091 (1972).

    Article  CAS  Google Scholar 

  13. J.D. Hoffman and J.I. Lauritzen, Jr.: Extension of theory of growth of chain folded polymer crystals to large undercoolings. J. Appl. Phys. 44, 4340 (1973).

    Article  Google Scholar 

  14. D. Rietzel: Werkstoffverhalten und Prozessanalyse beim Laser-Sintern von Thermoplasten. Ph.D. Dissertation, Technischen Fakultät der Universität Erlangen-Nürnberg, Erlangen, Germany, 2011.

    Google Scholar 

  15. J.C. Nelson, S. Xue, J.W. Barlow, J.J. Beaman, H.L. Marcus, and D.L. Bourell: Model of the selective laser sintering of bisphenol-A polycarbonate. Ind. Eng. Chem. Res. 32(10), 2305–2317 (1993).

    Article  CAS  Google Scholar 

  16. T.H.C. Childs, M. Berzins, G.R. Ryder, and A.E. Tontowi: Selective laser sintering of an amorphous polymer simulations and experiments. Proc. Inst. Mech. Eng., Part B 213(4), 333–349 (1999).

    Article  Google Scholar 

  17. A. Amado, M. Schmid, G. Levy, and K. Wegener: Advances in SLS powder characterization. In Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, 2011; pp. 438–452.

  18. S. Mazur: Polymer Powder Technology, M. Narkis and N. Rosenzweig ed.; Wiley: New York, 1995.

    Google Scholar 

  19. G. Ehrenstein, G. Riedel, and P. Trawiel: Thermal Analysis of Plastics: Theory and Practice, 1st ed. (Hanser-Verlag, Munich, 2004).

    Book  Google Scholar 

  20. G. Cojazzi, A. Fichera, C. Garbuglio, V. Malta, and R. Zannetti: The crystal structure of polylauryllactam (nylon 12). Die Makromolekulare Chemie 168, 289–301 (1973).

    Article  CAS  Google Scholar 

  21. D.R. Lippits, S. Rastogi, and G.W.H. Höhne: Melting kinetics in polymers. Phys. Rev. Lett. 96, 218303 (2006).

    Article  CAS  Google Scholar 

  22. T.F. Novitsky, L.J. Mathias, S. Osborn, R. Ayotte, and S. Manning: Synthesis and thermal behavior of polyamide 12,T random and block copolymers. Macromol. Symp. 313–314(1), 90–99 (2012).

    Article  Google Scholar 

  23. T.R. Crompton: Thermo-Oxidative Degradation of Polymers (iSmithers Rapra Publishing, Shawbury, Shrewsbury, UK, 2010).

    Google Scholar 

  24. B. Gantillon, R. Spitz, and T.F. McKenna: The solid state postcondensation of PET. Macromol. Mater. Eng. 289(1), 88–105 (2004).

    Article  CAS  Google Scholar 

  25. S. Dupin, C. Barrès, O. Lame, and J.-Y. Charmeau: Fundamental study of the processing of polyamide 12 by selective laser sintering: Analysis of the relations between polymer features, process conditions and final properties of parts. Proceedings of the Polymer Processing Society 29th Annual Meeting PPS-29, Nuremberg (Germany), 2013.

  26. internal, unpublished results.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Schmid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmid, M., Amado, A. & Wegener, K. Materials perspective of polymers for additive manufacturing with selective laser sintering. Journal of Materials Research 29, 1824–1832 (2014). https://doi.org/10.1557/jmr.2014.138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.138

Navigation