Skip to main content
Log in

First-principle study on thermodynamic property of superhard BC2N under extreme conditions

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, thermodynamic properties of BC2N under extreme conditions have been reported by using first-principle calculations and quasi-harmonic Debye model. Isochoric heat capacity (Cv) of BC2N at normal temperature and pressure is 23.15 kJ mol−1 K−1 and it increases with the temperature and decreases with the pressure. In the low temperature region, pressure has no obvious influence on phonons and thus the decrease of Cv is very slow. In the medium temperature region, the decrease of Cv becomes steep. The reason is that high pressure plays an important role in controlling the vibration of atoms. In the high temperature region, the decrease of Cv becomes slow. Debye temperature (θ) decreases with the temperature. However, the tendency is not obvious in the low temperature region but very clear in high temperature. Moreover, θ increases with pressure and the amplitude is larger in higher temperature. Because of the four covalent bonds with different strength and distribution asymmetric thermal expansion along different axes occurs. The value of thermal expansion coefficient along c axis is more than that of along a and b axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. R.B. Kaner, J.J. Gilman, and S.H. Tolbert: Designing superhard materials. Science 308, 1268 (2005).

    Article  CAS  Google Scholar 

  2. F.P. Bundy: Pressure-temperature phase diagram of elemental carbon. Physica A 156, 169 (1989).

    Article  CAS  Google Scholar 

  3. V.L. Solozhenko: Boron nitride phase diagram. State of the art. High Pressure Res. Int. J. 13, 199 (1995).

    Article  Google Scholar 

  4. S. Nakano, M. Akaishi, T. Sasaki, and S. Yamaoka: Segregative crystallization of several diamond-like phases from the graphitic BC2N without an additive at 7.7 GPa. Chem. Mater. 6, 2246 (1994).

    Article  CAS  Google Scholar 

  5. E. Knittle, R.B. Kaner, R. Jeanloz, and M. Cohen: High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions. Phys. Rev. B 51, 12149 (1995).

    Article  CAS  Google Scholar 

  6. T. Komatsu, M. Nomura, Y. Kakudate, and S. Fujiwara: Synthesis and characterization of a shock-synthesized cubic B–C–N solid solution of composition BC2.5N. J. Mater. Chem. 6, 1799 (1996).

    Article  CAS  Google Scholar 

  7. V.L. Solozhenko, S.N. Dub, and N.V. Novikov: Mechanical properties of cubic BC2N, a new superhard phase. Diamond Relat. Mater. 10, 2228 (2001).

    Article  CAS  Google Scholar 

  8. Y. Zhao, D.W. He, L.L. Daemen, T.D. Shen, R.B. Schwarz, Y. Zhu, D.L. Bish, J. Huang, J. Zhang, and G. Shen: Superhard BCN materials synthesized in nanostructured bulks. J. Mater. Res. 7, 3139 (2002).

    Article  Google Scholar 

  9. W.R. Lambrecht and B. Segall: Electronic structure of (diamond C)/(sphalerite BN)(110) interfaces and superlattices. Phys. Rev. B 40, 9909 (1989).

    Article  CAS  Google Scholar 

  10. Y. Tateyama, T. Ogitsu, K. Kusakabe, S. Tsuneyuki, and S. Itoh: Proposed synthesis path for heterodiamond BC2N. Phys. Rev. B 55, R10161 (1997).

    Article  CAS  Google Scholar 

  11. R.Q. Zhang, K.S. Chan, H.F. Cheung, and S.T. Lee: Energetics of segregation in β-C2BN. Appl. Phys. Lett. 75, 2259 (1999).

    Article  CAS  Google Scholar 

  12. J.C. Zheng, C.H.A. Huan, A.T.S. Wee, R.Z. Wang, and Y.M. Zheng: Ground-state properties of cubic C-BN solid solutions. J. Phys.-Condens. Matter 11, 927 (1999).

    Article  CAS  Google Scholar 

  13. H. Sun, S.H. Jhi, D. Roundy, M.L. Cohen, and S.G. Louie: Structural forms of cubic BC2N. Phys. Rev. B 64, 094108 (2001).

    Article  Google Scholar 

  14. J.Y. Lu and S.P. Gao: Theoretical ELNES fingerprints of BC2N polytypes. Comput. Mater. Sci. 68, 335 (2013).

    Article  CAS  Google Scholar 

  15. T. Zhu and S.P. Gao: GW calculations of the band gaps of BC2N polytypes. Eur. Phys. J. B 85, 285 (2012).

    Article  Google Scholar 

  16. S. Azevedo: Energetic and electronic structure of BC2N compounds. Eur. Phys. J. B 44, 203 (2005).

    Article  CAS  Google Scholar 

  17. Y. Zhang, H. Sun, and C.F. Chen: Superhard cubic BC2N compared to diamond. Phys. Rev. Lett. 93195504 (2004).

    Article  Google Scholar 

  18. M.C. Payne, M.P. Teter, D.C. Allan, T. Arias, and J. Joannopoulos: Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992).

    Article  CAS  Google Scholar 

  19. V. Milman, B. Winkler, J. White, C. Pickard, M. Payne, E. Akhmatskaya, and R. Nobes: Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. Int. J. Quantum Chem. 77, 895 (2000).

    Article  CAS  Google Scholar 

  20. M.A. Blanco, E. Francisco, and V. Luana: GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57 (2004).

    Article  CAS  Google Scholar 

  21. J.P. Perdew and A. Zunger: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  22. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  23. B. Hammer, L.B. Hansen, and J.K. Nørskov: Improved adsorption energetics within density functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 7413 (1999).

    Article  Google Scholar 

  24. J.P. Perdew, J. Chevary, S. Vosko, K.A. Jackson, M.R. Pederson, D. Singh, and C. Fiolhais: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992).

    Article  CAS  Google Scholar 

  25. Z.G. Wu and R.E. Cohen: More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006).

    Article  Google Scholar 

  26. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  27. D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    Article  CAS  Google Scholar 

  28. W.Y. Ren, F. Wang, Z. Zheng, P.C. Xu, and W.G. Sun: Elastic and thermodynamic properties of fcc−6Li2O under high temperatures and pressures. J. Nucl. Mater. 404, 116 (2010).

    Article  CAS  Google Scholar 

  29. E. Francisco, J.M. Recio, M.A. Blanco, A.M. Pendás, and A. Costales: Quantum-mechanical study of thermodynamic and bonding properties of MgF2. J. Phys. Chem. A 102, 1595 (1998).

    Article  CAS  Google Scholar 

  30. J.P. Poirier: Introduction to the Physics of the Earth’s Interior, 2nd ed. (Cambridge Univ. Press, Cambridge, England, 2000), pp. 14–15.

    Book  Google Scholar 

  31. M. Flórez, J.M. Recio, E. Francisco, M.A. Blanco, and A.M. Pendás: First-principles study of the rocksalt–cesium chloride relative phase stability in alkali halides. Phys. Rev. B 66, 144112 (2002).

    Article  Google Scholar 

  32. R. Hill: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349 (1952).

    Article  Google Scholar 

  33. V.L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and D.C. Rubie: Synthesis of superhard cubic BC2N. Appl. Phys. Lett. 78, 1385 (2001).

    Article  CAS  Google Scholar 

  34. X.J. Guo, Z.Y. Liu, X.G. Luo, D.L. Yu, J.L. He, Y.J. Tian, J. Sun, and H.T. Wang: Theoretical hardness of the cubic BC2N. Diamond Relat. Mater. 16, 526 (2007).

    Article  CAS  Google Scholar 

  35. X.F. Fan, H.Y. Wu, Z.X. Shen, and J.L. Kuo: A first-principle study on the structure, stability and hardness of cubic BC2N. Diamond Relat. Mater. 18, 1278 (2009).

    Article  CAS  Google Scholar 

  36. B. Francis: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809 (1947).

    Article  Google Scholar 

  37. P. Debye: Zur theorie der spezifischen wärmen. Ann. Phys. 344, 789–839 (1912).

    Article  Google Scholar 

  38. A.T. Petit and P.L. Dulong: Recherchés sur quelques points importants de la theorie de la cheaeur. Ann. Phys. 10, 395 (1819).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The project was supported by the Open Foundation of Laboratory for Extreme Conditions Matter Properties, China (Grant No. 11zxjk05); First Funding Scheme of Young Teachers in Institution of Higher Education, Chongqing, China; Key Science and Technology Project of Ministry of Education 2012, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Hu, C., Liu, Z. et al. First-principle study on thermodynamic property of superhard BC2N under extreme conditions. Journal of Materials Research 29, 1326–1333 (2014). https://doi.org/10.1557/jmr.2014.134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.134

Navigation