Skip to main content

Advertisement

Log in

Beam speed effects on Ti–6Al–4V microstructures in electron beam additive manufacturing

  • Metal
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of the beam scanning speed on part microstructures in the powder-bed electron beam additive manufacturing (EBAM) process was investigated in this research. Four levels of the beam speed were tested in building EBAM Ti–6Al–4V samples. The samples were subsequently used to prepare metallographic specimens for observations by optical microscopy and scanning electron microscopy. During the experiment, a near-infrared thermal imager was also used to acquire build surface temperatures for melt tool size estimates. It was found that the X-plane (side surface) shows columnar prior β grains, with the width in the range of about 40–110 µm, and martensitic structures. The width of columnar grains decreases with the increase of the scanning speed. In addition, the Z-plane (scanning surface) shows equiaxed grains, in the range of 50–85 µm. The grain size from the lowest beam speed (214 mm/s) is much larger compared to other samples of higher beam speeds (e.g., 376–689 mm/s). In addition, increasing the beam scanning speed will also result in finer α-lath. However, the porosity defect on the build surface also becomes severe at the highest scanning speed (689 mm/s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker: Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V. Mater. Charact. 60, 96 (2009).

    Article  CAS  Google Scholar 

  2. X. Gong and K. Chou: Characterizations of sintered Ti-6Al-4V powders in electron beam additive manufacturing. Proceedings of the ASME International Manufacturing Science and Engineering Conference, L. Mears ed.; ASME, Madison, WI, 2013; p. V001T01A0022013.

    Google Scholar 

  3. M.F. Zäh and S. Lutzmann: Modelling and simulation of electron beam melting. Prod. Eng. 4, 15 (2010).

    Article  Google Scholar 

  4. N. Shen and K. Chou: Thermal modeling of electron beam additive manufacturing process: Powder sintering effect. Proceedings of the ASME International Manufacturing Science and Engineering Conference, S.R. Schmid, H.Y. Greenslet, and L. Mears ed.; ASME, Notre Dame, IN, 2012; p. 287.

    Google Scholar 

  5. X. Gong, B. Cheng, S. Price, and K. Chou: Powder-bed electron-beam-melting additive manufacturing: Powder characterization, process simulation and metrology. Early Career Technical Conference, P. Durbetaki and J. Donnell ed.; ASME, Birmingham, AL, 2013; p. 59.

    Google Scholar 

  6. S. Price, K. Cooper, and K. Chou: Evaluations of temperature measurements by near-infrared thermography in powder-based electron-beam additive manufacturing. Proceedings of the Solid Freeform Fabrication Symposium, D. Bourell, R.H. Crawford, C.C. Seepersad, J.J. Beaman, and H.L. Marcus ed.; University of Texas, Austin, TX, 2012; p. 761.

    Google Scholar 

  7. M. Koike, K. Martinez, L. Guo, G. Chahine, R. Kovacevic, and T. Okabe: Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. J. Mater. Process. Technol. 211, 1400 (2011).

    Article  CAS  Google Scholar 

  8. A.L. Cooke and J.A. Soons: Variability in the geometric accuracy of additively manufactured test parts. Proceedings of the Solid Freeform Fabrication Symposium, D. Bourell ed.; University of Texas, Austin, TX, 2010; pp. 1.

    Google Scholar 

  9. S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd: The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V. Metall. Mater. Trans. A 41A, 3422 (2010).

    Article  Google Scholar 

  10. A. Safdar, L.Y. Wei, A. Snis, and Z. Lai: Evaluation of microstructural development in electron beam melted Ti-6Al-4V. Mater. Charact. 65, 8 (2012).

    Article  CAS  Google Scholar 

  11. A.A. Antonysamy, J. Meyer, and P.B. Prangnell: Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting. Mater. Charact. 84, 153 (2013).

    Article  CAS  Google Scholar 

  12. L. Facchini, E. Magalini, P. Robotti, and A. Molinari: Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyping J. 15, 171 (2009).

    Article  Google Scholar 

  13. A. Christensen, R. Kircher, and A. Lippincott: Qualification of electron beam melted (EBM) Ti6Al4V-ELI for orthopaedic applications. Proceedings of the Materials Processes for Medical Devices Conference, J. Gilbert ed.; ASM International, Palm Desert, CA, 2007; pp. 48.

    Google Scholar 

  14. L.E. Murr, S.M. Gaytan, F. Medina, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, and R.B. Wicker: Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting. Mater. Sci. Eng., A 527, 1861–1868 (2010).

    Article  Google Scholar 

  15. X. Gong, T. Anderson, and K. Chou: Review on powder-based electron beam additive manufacturing technology. In International Symposium on Flexible Automation, M. Leu ed.; ASME, St. Louis, MO, 2012; p. 507.

    Google Scholar 

  16. L.E. Murr, S.M. Gaytan, F. Medina, E. Martinez, D.H. Hernandez, L. Martinez, M.I. Lopez, R.B. Wicker, and S. Collins: Effect of build parameters and build geometries on residual microstructures and mechanical properties of Ti-6Al-4V components built by electron beam melting (EBM). Proceedings of the Solid Freeform Fabrication Symposium, D. Bourell ed.; University of Texas, Austin, TX, 2009; p. 374.

    Google Scholar 

  17. S. Bontha, N.W. Klingbeil, P.A. Kobryn, and H.L. Fraser: Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures. Mater. Sci. Eng., A 513–514, 311 (2009).

    Article  Google Scholar 

  18. L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, and R.B. Wicker: Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2, 20 (2009).

    Article  CAS  Google Scholar 

  19. M. Jamshidinia, F. Kong, and R. Kovacevic: The coupled CFD-FEM model of electron beam melting (EBM). Proceedings of the Early Career Technical Conference (ECTC), P. Durbetaki and J. Donnell ed.; ASME, Birmingham, AL, 2013; p. 163.

    Google Scholar 

  20. T.R. Mahale: Electron beam melting of advanced materials and structures. Ph.D. Dissertation, North Carolina State University, Raleigh, NC, 2009.

    Google Scholar 

  21. K. Wang, W. Zeng, Y. Shao, Y. Zhao, and Y. Zhou: Quantification of microstructural features in titanium alloys based on stereology. Rare Met. Mater. Eng. 38, 398 (2009).

    CAS  Google Scholar 

  22. S.M. Kelly: Thermal and microstructure modeling of metal deposition processes with application to Ti-6Al-4V. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2004.

    Google Scholar 

  23. X. Wu, J. Liang, J. Mei, C. Mitchell, P.S. Goodwin, and W. Voice: Microstructures of laser-deposited Ti-6Al-4V. Mater. Des. 25, 137 (2004).

    Article  CAS  Google Scholar 

  24. T. Ahmed and H.J. Rack: Phase transformations during cooling in α + β titanium alloys. Mater. Sci. Eng., A 243, 206 (1998).

    Article  Google Scholar 

  25. J.W. Elmer, T.A. Palmer, S.S. Babu, W. Zhang, and T. Debroy: Phase transformation dynamics during welding of Ti-6Al-4V. J. Appl. Phys. 95, 8327 (2004).

    Article  CAS  Google Scholar 

  26. B. Baufeld, E. Brandl, and O. van der Biest: Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition. J. Mater. Process. Technol. 211, 1146 (2011).

    Article  CAS  Google Scholar 

  27. W. Lu, Y. Shi, Y. Lei, and X. Li: Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy. Mater. Des. 34, 509–515 (2012).

    Article  CAS  Google Scholar 

  28. K. Amato, J. Hernandez, L.E. Murr, E. Martinez, S.M. Gaytan, P.W. Shindo, and S. Collins: Comparison of microstructures and properties for a Ni-base superalloy (alloy 625) fabricated by electron beam melting. J. Mater. Sci. Res. 1, 3 (2012).

    CAS  Google Scholar 

  29. L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medin, S. Collins, and R.B. Wicker: Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Mater. 58, 1887 (2010).

    Article  CAS  Google Scholar 

  30. J. Gockel and J. Beuth: Understanding Ti-6Al-4V microstructure control in additive manufacturing via process maps. Proceedings of the Solid Freeform Fabrication Symposium, D. Bourell ed.; University of Texas, Austin, TX, 2013; p. 666.

    Google Scholar 

  31. F.J. Gil, M.P. Ginebra, J.M. Manero, and J.A. Planell: Formation of α-Widmanstätten structure: Effects of grain size and cooling rate on the Widmanstätten morphologies and on the mechanical properties in Ti6Al4V alloy. J. Alloys Compd. 329, 142 (2001).

    Article  CAS  Google Scholar 

  32. Y. Xi, M. Bermingham, G. Wang, and M. Dargusch: Finite element modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy. J. Manuf. Sci. Eng. 135, 061014 (2013).

    Article  Google Scholar 

  33. A. Safdar: A study on electron beam melted Ti-6Al-4V. M.S. Thesis, Lund University, Lund, Sweden, 2012.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This research is supported by NASA (award No. NNX11AM11A). Steven Price provided the temperature measurement results. XG also acknowledges AL EPSCoR GRSP for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Chou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Lydon, J., Cooper, K. et al. Beam speed effects on Ti–6Al–4V microstructures in electron beam additive manufacturing. Journal of Materials Research 29, 1951–1959 (2014). https://doi.org/10.1557/jmr.2014.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.125

Navigation