Abstract
Silver-decorated titanium dioxide (Ag/TiO2) nanotube (NT) arrays were successfully prepared using a two-step synthesis route comprised of an anodic oxidation procedure followed by photochemical reduction using ultraviolet irradiation. The resulting Ag/TiO2 NT arrays were characterized using scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and UV-vis diffusion reflectance spectrometry. The characterization results indicated that the silver decoration significantly enhanced the light absorption capability of the TiO2 NT arrays in the visible spectral range. The visible light photocatalytic activity of the subject NT arrays was investigated. The experimental results showed the photocatalytic activity of silver-decorated titanium dioxide Ag/TiO2 NT arrays to be dependent on the size of the silver particles. The improved visible light absorption can be attributed to plasmonic effects induced by particle size phenomenon. The Ag/TiO2 NT arrays exhibit promising application for photocatalytic degradation of dye solutions and pollutants in water using visible irradiation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
D. Gong, C.A. Grimes, and O.K. Varghese: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).
G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes: Use of highly ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 (2006).
S. Liang, J. He, Z. Sun, Q. Liu, Y. Jiang, and H. Cheng: Improving photoelectrochemical water splitting activity of TiO2 nanotube arrays by tuning geometrical parameters. J. Phys. Chem. C 116, 9049 (2012).
H. Liu, Y. He, and X. Liang: Magnetic photocatalysts containing TiO2 nanocrystals: Morphology effect on photocatalytic activity. J. Mater. Res. 29, 98 (2014).
U. Shaislamov and B.L. Yang: CdS-sensitized single-crystalline TiO2 nanorods and polycrystalline nanotubes for solar hydrogen generation. J. Mater. Res. 28, 418 (2013).
S. Dutta, A.K. Patra, S. De, A. Bhaumik, and B. Saha: Self-assembled TiO2 nanospheres by using biopolymer as a template and its optoelectronic application. ACS Appl. Mater. Interfaces 4, 1560 (2012).
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).
R.P. Antony, T. Mathews, K. Panda, B. Sundaravel, S. Dash, and A.K. Tyagi: Enhanced field emission properties of electrochemically synthesized self-aligned nitrogen-doped TiO2 nanotube array thin films. J. Phys. Chem. C 116, 16740 (2012).
M. Ye, J. Gong, Y. Lai, C. Lin, and Z. Lin: High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J. Am. Chem. Soc. 134, 15720 (2012).
W. Guo, X. Xue, S. Wang, C. Lin, and Z.L. Wang: An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 12, 2520 (2012).
Y. Hou, X. Li, Q. Zhao, G. Chen, and C.L. Raston: Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube arrays electrode under visible light irradiation. Environ. Sci. Technol. 46, 4042 (2012).
Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S.B. Cronin: Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111 (2011).
M. Gao, Y. Xu, and Y. Bai: Synthesis and characterization of Nb, F-codoped titania nanoparticles for dye-sensitized solar cells. J. Mater. Res. 29, 230 (2014).
K. Xie, L. Sun, C. Wang, Y. Lai, M. Wang, H. Chen, and C. Lin: Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim. Acta 55, 7211 (2010).
Z. Xu, J. Yu, and G. Liu: Enhancement of ethanol electrooxidation on plasmonic Au/TiO2 nanotube arrays. Electrochem. Commun. 13, 1260 (2011).
K. Xie, Q. Wu, Y. Wang, W. Guo, M. Wang, and L. Sun: Electrochemical construction of Z-scheme type CdS-Ag-TiO2 nanotube arrays with enhanced photocatalytic activity. Electrochem. Commun. 13, 1469 (2011).
H.A. Atwater and A. Polman: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010).
K.M. Mayer and J.H. Hafner: Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828 (2011).
Y. Tian and T. Tatsuma: Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632 (2005).
I. Paramasivam, J.M. Macak, A. Ghicov, and P. Schmuki: Enhanced photochromism of Ag loaded self-organized TiO2 nanotube layers. Chem. Phys. Lett. 445, 233 (2007).
S. Mubeen, S.G. Hernandez, D. Moses, J. Lee, and M. Moskovits: Plasmonic photosensitization of a wide band gap semiconductor: Converting plasmons to charge carriers. Nano Lett. 11, 5548 (2011).
M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, and Q. Zhang: Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669 (2011).
S. Zhang, F. Peng, H. Wang, H. Yu, S. Zhang, and J. Yang: Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance. Catal. Commun. 12, 689 (2011).
R. Liu, W. Yang, L. Qiang, and J. Wu: Fabrication of TiO2 nanotube arrays by electrochemical anodization in an NH4F/H3PO4 electrolyte. Thin Solid Films 519, 6459 (2011).
L. Sun, J. Li, C. Wang, S. Li, Y. Lai, and H. Chen: Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. J. Hazard. Mater. 171, 1045 (2009).
Y. Gao, P. Fang, F. Chen, Y. Liu, Z. Liu, and D. Wang: Enhancement of stability of N-doped TiO2 photocatalysts with Ag loading. Appl. Surf. Sci. 265, 796 (2013).
P.K. Jain, K.S. Lee, L.H. El-Sayed, and M.A. El-Sayed: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238 (2006).
R.W. Matthews: Photooxidation of organic impurities in water using thin films of titanium dioxide. J. Phys. Chem. 91, 3328 (1987).
M.K. Lee, T.G. Kim, W. Kim, and Y.M. Sung: Surface plasmon resonance electron and energy transfer in noble metal-zinc oxide composite nanocrystals. J. Phys. Chem. 112, 10079 (2008).
S. Linic, P. Christopher, and D.B. Ingram: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911 (2011).
L. Wu, J.C. Yu, and X. Fu: Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. J. Mol. Catal. A: Chem. 244, 25 (2006).
ACKNOWLEDGMENTS
This work was financially supported by the National Natural Science Foundation of China (Grant No. 11274103), and the Key Project of education bureau of Hubei Province of China (Grant No. D20111003).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Chen, K., Feng, X., Tian, H. et al. Silver-decorated titanium dioxide nanotube arrays with improved photocatalytic activity for visible light irradiation. Journal of Materials Research 29, 1302–1308 (2014). https://doi.org/10.1557/jmr.2014.116
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2014.116