Skip to main content
Log in

Silver-decorated titanium dioxide nanotube arrays with improved photocatalytic activity for visible light irradiation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Silver-decorated titanium dioxide (Ag/TiO2) nanotube (NT) arrays were successfully prepared using a two-step synthesis route comprised of an anodic oxidation procedure followed by photochemical reduction using ultraviolet irradiation. The resulting Ag/TiO2 NT arrays were characterized using scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and UV-vis diffusion reflectance spectrometry. The characterization results indicated that the silver decoration significantly enhanced the light absorption capability of the TiO2 NT arrays in the visible spectral range. The visible light photocatalytic activity of the subject NT arrays was investigated. The experimental results showed the photocatalytic activity of silver-decorated titanium dioxide Ag/TiO2 NT arrays to be dependent on the size of the silver particles. The improved visible light absorption can be attributed to plasmonic effects induced by particle size phenomenon. The Ag/TiO2 NT arrays exhibit promising application for photocatalytic degradation of dye solutions and pollutants in water using visible irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. D. Gong, C.A. Grimes, and O.K. Varghese: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).

    Article  CAS  Google Scholar 

  2. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes: Use of highly ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 (2006).

    Article  CAS  Google Scholar 

  3. S. Liang, J. He, Z. Sun, Q. Liu, Y. Jiang, and H. Cheng: Improving photoelectrochemical water splitting activity of TiO2 nanotube arrays by tuning geometrical parameters. J. Phys. Chem. C 116, 9049 (2012).

    Article  CAS  Google Scholar 

  4. H. Liu, Y. He, and X. Liang: Magnetic photocatalysts containing TiO2 nanocrystals: Morphology effect on photocatalytic activity. J. Mater. Res. 29, 98 (2014).

    Article  Google Scholar 

  5. U. Shaislamov and B.L. Yang: CdS-sensitized single-crystalline TiO2 nanorods and polycrystalline nanotubes for solar hydrogen generation. J. Mater. Res. 28, 418 (2013).

    Article  CAS  Google Scholar 

  6. S. Dutta, A.K. Patra, S. De, A. Bhaumik, and B. Saha: Self-assembled TiO2 nanospheres by using biopolymer as a template and its optoelectronic application. ACS Appl. Mater. Interfaces 4, 1560 (2012).

    Article  CAS  Google Scholar 

  7. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).

    CAS  Google Scholar 

  8. R.P. Antony, T. Mathews, K. Panda, B. Sundaravel, S. Dash, and A.K. Tyagi: Enhanced field emission properties of electrochemically synthesized self-aligned nitrogen-doped TiO2 nanotube array thin films. J. Phys. Chem. C 116, 16740 (2012).

    Article  CAS  Google Scholar 

  9. M. Ye, J. Gong, Y. Lai, C. Lin, and Z. Lin: High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J. Am. Chem. Soc. 134, 15720 (2012).

    Article  CAS  Google Scholar 

  10. W. Guo, X. Xue, S. Wang, C. Lin, and Z.L. Wang: An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 12, 2520 (2012).

    Article  CAS  Google Scholar 

  11. Y. Hou, X. Li, Q. Zhao, G. Chen, and C.L. Raston: Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube arrays electrode under visible light irradiation. Environ. Sci. Technol. 46, 4042 (2012).

    Article  CAS  Google Scholar 

  12. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S.B. Cronin: Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111 (2011).

    Article  CAS  Google Scholar 

  13. M. Gao, Y. Xu, and Y. Bai: Synthesis and characterization of Nb, F-codoped titania nanoparticles for dye-sensitized solar cells. J. Mater. Res. 29, 230 (2014).

    Article  CAS  Google Scholar 

  14. K. Xie, L. Sun, C. Wang, Y. Lai, M. Wang, H. Chen, and C. Lin: Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim. Acta 55, 7211 (2010).

    Article  CAS  Google Scholar 

  15. Z. Xu, J. Yu, and G. Liu: Enhancement of ethanol electrooxidation on plasmonic Au/TiO2 nanotube arrays. Electrochem. Commun. 13, 1260 (2011).

    Article  CAS  Google Scholar 

  16. K. Xie, Q. Wu, Y. Wang, W. Guo, M. Wang, and L. Sun: Electrochemical construction of Z-scheme type CdS-Ag-TiO2 nanotube arrays with enhanced photocatalytic activity. Electrochem. Commun. 13, 1469 (2011).

    Article  CAS  Google Scholar 

  17. H.A. Atwater and A. Polman: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010).

    Article  CAS  Google Scholar 

  18. K.M. Mayer and J.H. Hafner: Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828 (2011).

    Article  CAS  Google Scholar 

  19. Y. Tian and T. Tatsuma: Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632 (2005).

    Article  CAS  Google Scholar 

  20. I. Paramasivam, J.M. Macak, A. Ghicov, and P. Schmuki: Enhanced photochromism of Ag loaded self-organized TiO2 nanotube layers. Chem. Phys. Lett. 445, 233 (2007).

    Article  CAS  Google Scholar 

  21. S. Mubeen, S.G. Hernandez, D. Moses, J. Lee, and M. Moskovits: Plasmonic photosensitization of a wide band gap semiconductor: Converting plasmons to charge carriers. Nano Lett. 11, 5548 (2011).

    Article  CAS  Google Scholar 

  22. M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, and Q. Zhang: Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669 (2011).

    Article  CAS  Google Scholar 

  23. S. Zhang, F. Peng, H. Wang, H. Yu, S. Zhang, and J. Yang: Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance. Catal. Commun. 12, 689 (2011).

    Article  CAS  Google Scholar 

  24. R. Liu, W. Yang, L. Qiang, and J. Wu: Fabrication of TiO2 nanotube arrays by electrochemical anodization in an NH4F/H3PO4 electrolyte. Thin Solid Films 519, 6459 (2011).

    Article  CAS  Google Scholar 

  25. L. Sun, J. Li, C. Wang, S. Li, Y. Lai, and H. Chen: Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. J. Hazard. Mater. 171, 1045 (2009).

    Article  CAS  Google Scholar 

  26. Y. Gao, P. Fang, F. Chen, Y. Liu, Z. Liu, and D. Wang: Enhancement of stability of N-doped TiO2 photocatalysts with Ag loading. Appl. Surf. Sci. 265, 796 (2013).

    Article  CAS  Google Scholar 

  27. P.K. Jain, K.S. Lee, L.H. El-Sayed, and M.A. El-Sayed: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238 (2006).

    Article  CAS  Google Scholar 

  28. R.W. Matthews: Photooxidation of organic impurities in water using thin films of titanium dioxide. J. Phys. Chem. 91, 3328 (1987).

    Article  CAS  Google Scholar 

  29. M.K. Lee, T.G. Kim, W. Kim, and Y.M. Sung: Surface plasmon resonance electron and energy transfer in noble metal-zinc oxide composite nanocrystals. J. Phys. Chem. 112, 10079 (2008).

    CAS  Google Scholar 

  30. S. Linic, P. Christopher, and D.B. Ingram: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911 (2011).

    Article  CAS  Google Scholar 

  31. L. Wu, J.C. Yu, and X. Fu: Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. J. Mol. Catal. A: Chem. 244, 25 (2006).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11274103), and the Key Project of education bureau of Hubei Province of China (Grant No. D20111003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kansong Chen or Haoshuang Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Feng, X., Tian, H. et al. Silver-decorated titanium dioxide nanotube arrays with improved photocatalytic activity for visible light irradiation. Journal of Materials Research 29, 1302–1308 (2014). https://doi.org/10.1557/jmr.2014.116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.116

Navigation