Skip to main content

Advertisement

Log in

Optimization of solution-processed Cu(In,Ga)S2 by tuning series and shunt resistance

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Solution-processed CuInGaS2 (CIGS) thin-film solar cells are promising for large-scale commercialization due to their economic process although the efficiency still needs to be improved to compete with vacuum-based materials. Systematic studies were performed to optimize the series and shunt resistance of hydrazine-based CIGS solar cells. Optimization was achieved through compositional adjustment of copper (Cu) near the p-n junction and gallium (Ga) near the back contact. Cu adjustments optimized the shunt resistance between 4000 and 5000 Ω cm2. Ga adjustments optimized the series resistance to 2 Ω cm2. Shunt and series resistance play vital roles in the fill factor. Fill factor was hence improved upward of 0.80 with the optimization of Cu and Ga. Chemical etching was also conducted to investigate the durability of the materials and to remove small crystals near the interface. Device conversion efficiencies were improved up to 12.4%. This study provides the implications for improving the device performance of chalcogenide solar cell materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi: 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovoltaics 16, 235 (2008).

    Article  CAS  Google Scholar 

  2. M. Kaelin, D. Rudmann, and A.N. Tiwari: Low cost processing of CIGS thin film solar cells. Sol. Energy 77, 749–756 (2004).

    Article  CAS  Google Scholar 

  3. D. Guimard, N. Bodereau, J. Kurdi, J.F. Guillemoles, D. Lincot, P-P. Grand, M. Ben Farrah, S. Taunier, O. Kerrec, and P. Mogensen: Efficient Cu(In,Ga)Se2 based solar cells prepared by electrodeposition. Mater. Res. Bull. 763, B6.9.1–B.9.6 (2003).

    Google Scholar 

  4. R.N. Bhattacharya, J.F. Hiltner, W. Batchelor, M.A. Contreras, R. Noufi, and J.R. Sites: 15.4% CuIn1-xGaxSe2-based precursor films. Thin Solid Films 361–362, 396–399 (2000).

    Article  Google Scholar 

  5. V.K. Kapur, A. Bansal, P. Le, and O.I. Asensio: Non-vacuum processing of CuIn1-xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks. Thin Solid Films 431–432, 53–57 (2003).

    Article  Google Scholar 

  6. C. Eberspacher, C. Fredric, K. Pauls, and J. Serra: Thin film CIS alloy PV materials fabricated using non-vacuum, particles-based techniques. Thin Solid Films 387, 18–22 (2001).

    Article  CAS  Google Scholar 

  7. M.H-C. Jin, K.K. Banger, J.D. Harris, and A.F. Hepp: The effect of film composition on the texture and grain size of CuInS2 prepared by chemical spray pyrolysis. Mater. Res. Bull. 763, B8.23.1–B8.23.6 (2003).

    Google Scholar 

  8. W. Liu, D.B. Mitzi, M. Yuan, A.J. Kellock, S.J. Chey, and O. Gunawan: 12% efficiency CuIn(Se,S)2 photovoltaic device prepared using a hydrazine solution process. Chem. Mater. 22, 1010–1014 (2010).

    Article  CAS  Google Scholar 

  9. T.K. Todorov, O. Gunawan, T. Gokmen, and D.B. Mitzi: Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell. Prog. Photovoltaics 21, 82–87 (2013).

    Article  CAS  Google Scholar 

  10. D.B. Mitzi, M. Yuan, W. Liu, A.J. Kellock, S.J. Chey, V. Deline, and A.G. Schrott: A high-efficiency solution deposited thin film photovoltaic device. Adv. Mater. 20, 3657–3662 (2008).

    Article  CAS  Google Scholar 

  11. D.B. Mitzi, M. Yuan, W. Liu, A. Kellock, S.J. Chey, A. Schrott, and V. Deline: Solution processing of CIGS absorber layers using a hydrazine-based approach. In Photovoltaics Specialist Conference, 33rd IEEE, DOI: https://doi.org/10.1109/PVSC.2008.4922730 (2008).

  12. D.B. Mitzi, M. Yuan, W. Liu, A.J. Kellock, S.J. Chey, L. Gignac, and A.G. Schrott: Hydrazine-based deposition route for device quality CIGS films. Thin Solid Films 517, 2158–2162 (2009).

    Article  CAS  Google Scholar 

  13. M. Yuan and D.B. Mitzi: Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and film. Dalton Trans. 31, 1477–2996, 6078 (2009).

    Google Scholar 

  14. M. Leskela and M. Ritala: Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films 409, 138 (2002).

    Article  CAS  Google Scholar 

  15. L. Niinisto, J. Paivasaari, J. Niinisto, M. Putkonen, and M. Nieminen: Advanced electronic and optoelectronic materials by atomic layer deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials. Phys. Status Solidi A 201, 1443 (2004).

    Article  Google Scholar 

  16. D.H. Levy and S.F. Nelson: Thin-film electronics by atomic layer deposition. J. Vac. Sci. Technol. A 30, 018501 (2012).

    Article  Google Scholar 

  17. J.Y. Kim, Y.J. Choi, H.H. Park, S. Golledge, and D.C. Johnson: Effective atomic layer deposition procedure for Al-dopant distribution in ZnO thin films. J. Vac. Sci. Technol. A 28, 1111 (2010).

    Article  CAS  Google Scholar 

  18. A. Virtuani, E. Lotter, and M. Powalla: Influence of Cu content on electronic transport and shunting behavior of Cu(In,Ga)Se2 solar cells. J. Appl. Phys. 99, 014906 (2006).

    Article  Google Scholar 

  19. J. Kessler, C. Chityuttakan, J. Lu, J. Scholdstrom, and L. Stolt: Cu(In,Ga)Se2 thin films grown with a Cu-poor/rich/poor sequence: Growth model and structural considerations. Prog. Photovolt.: Res. Appl. 11, 319–331 (2003).

    Article  CAS  Google Scholar 

  20. W.N. Shafarman and J. Zhu: Effect of substrate temperature and deposition profile on evaporated Cu(In,Ga)Se2 films and devices. Thin Solid Films 361, 473–477 (2000).

    Article  Google Scholar 

  21. R. Klenk, T. Walter, H.W. Schock, and D. Cahen: A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation. Adv. Mater. 5, 114–119 (1993).

    Article  CAS  Google Scholar 

  22. S.H. Kwon, D.Y. Lee, and B.T. Ahn: Characterization of Cu(In,Ga)Se2 films prepared by three-stage coevaporation and their application to CIGS solar cells for a 14.48% efficiency. J. Korean Phys. Soc. 39, 655–660 (2001).

    CAS  Google Scholar 

  23. S.H. Kwon, B.T. Ahn, S.K. Kim, K.H. Yoon, and J. Song: Growth of CuIn3Se5 layer on CuInSe2 films and its effect on the photovoltaic properties of In2Se3/CuInSe2 solar cells. Thin Solid Films 323, 265–269 (1998).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by NSF under award EPS-1003970. The authors would like to thank the UALR Nanotechnology Center for use of its SEM and EDS facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbiao Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, J.C., Cui, J. Optimization of solution-processed Cu(In,Ga)S2 by tuning series and shunt resistance. Journal of Materials Research 29, 1309–1316 (2014). https://doi.org/10.1557/jmr.2014.114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.114

Navigation