Skip to main content
Log in

Temperature dependence of static and dynamic magnetic properties in NiFe/IrMn bilayer system

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A systematic experimental study on the exchange bias (EB) effect in a ferromagnet/antiferromagnet bilayer system is performed both in the static (dc) and dynamic (high frequency) timescale to clarify the effects of temperature and antiferromagnetic (AFM) layer thickness on the system’s stability and magnetic properties. Our system consists of NiFe/IrMn. Both parallel and perpendicular domain walls are suggested to explain the static EB and coercivity behaviors. In the microwave region, peaks, which can only be suppressed at high temperatures with strong external fields, were observed in the AFM thickness dependencies of the dynamic effective field and resonance frequency. The temperature dependence of both static and dynamic parameters suggests different values of Néel temperatures. The dynamic results show a rotatable anisotropy contribution, which has a peak value at the blocking temperature and vanishes at the dynamic Néel temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. W.H. Meiklejohn and C.P. Bean: New magnetic anisotropy. Phys. Rev. 102(5), 1413 (1956).

    Article  Google Scholar 

  2. W.H. Meiklejohn and C.P. Bean: New magnetic anisotropy. Phys. Rev. 105(3), 904 (1957).

    Article  CAS  Google Scholar 

  3. J. Nogues and I.K. Schuller: Exchange bias. J. Magn. Magn. Mater. 192(2), 203 (1999).

    Article  CAS  Google Scholar 

  4. M. Kiwi: Exchange bias theory. J. Magn. Magn. Mater. 234(3), 584 (2001).

    Article  CAS  Google Scholar 

  5. M.D. Stiles and R.D. McMichael: Coercivity in exchange-bias bilayers. Phys. Rev. B 63(6), 064405 (2001).

    Article  CAS  Google Scholar 

  6. R.D. McMichael, M.D. Stiles, P.J. Chen, and W.F. Egelhoff: Ferromagnetic resonance studies of NiO-coupled thin films of Ni80Fe20. Phys. Rev. B 58(13), 8605 (1998).

    Article  CAS  Google Scholar 

  7. M. Rubinstein, P. Lubitz, and S.F. Cheng: Ferromagnetic-resonance field shift in an exchange-biased CoO/Ni80Fe20 bilayer. J. Magn. Magn. Mater. 195(2), 299 (1999).

    Article  CAS  Google Scholar 

  8. J.G. Hu, G.J. Jin, and Y.Q. Ma: Ferromagnetic resonance and exchange anisotropy in ferromagnetic/antiferromagnetic bilayers. J. Appl. Phys. 91(4), 2180 (2002).

    Article  CAS  Google Scholar 

  9. P. Lubitz, J.J. Krebs, M.M. Miller, and S. Cheng: Temperature dependence of ferromagnetic resonance as induced by NiO pinning layers. J. Appl. Phys. 83(11), 6819 (1998).

    Article  CAS  Google Scholar 

  10. W.H. Meiklejohn: Exchange anisotropy—A review. J. Appl. Phys. 33(3), 1328 (1962).

    Article  CAS  Google Scholar 

  11. J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, and M.D. Baro: Exchange bias in nanostructures. Phys. Rep. 422(3), 65 (2005).

    Article  Google Scholar 

  12. P.Y. Yang, C. Song, B. Fan, F. Zeng, and F. Pan: The role of rotatable anisotropy in the asymmetric magnetization reversal of exchange biased NiO/Ni bilayers. J. Appl. Phys. 106(1), 013902 (2009).

    Article  CAS  Google Scholar 

  13. R.L. Stamps: Mechanisms for exchange bias. J. Phys. D: Appl. Phys. 33(23), R247 (2000).

    Article  CAS  Google Scholar 

  14. B. Dieny, V.S. Speriosu, S.S.P. Parkin, B.A. Gurney, D.R. Wilhoit, and D. Mauri: Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B 43(1), 1297 (1991).

    Article  CAS  Google Scholar 

  15. C. Chappert, A. Fert, and F. Nguyen Van Dau: The emergence of spin electronics in data storage. Nat. Mater. 6, 813 (2007).

    Article  CAS  Google Scholar 

  16. C.Y. You, H.S. Goripati, T. Furubayashi, Y.K. Takahashi, and K. Hono: Exchange bias of spin valve structure with a top-pinned Co40Fe40B20/IrMn. Appl. Phys. Lett. 93(1), 012501 (2008).

    Article  CAS  Google Scholar 

  17. W. Stoecklein, S.S.P. Parkin, and J.C. Scott: Ferromagnetic resonance studies of exchange-biased permalloy thin films. Phys. Rev. B 38(10), 6847 (1988).

    Article  CAS  Google Scholar 

  18. B.K. Kuanr, R.E. Camley, and Z. Celinski: Exchange bias of NiO/NiFe: Linewidth broadening and anomalous spin-wave damping. J. Appl. Phys. 93(10), 7723 (2003).

    Article  CAS  Google Scholar 

  19. S. Queste, S. Dubourg, O. Acher, K.U. Barholz, and R. Mattheis: Exchange bias anisotropy on the dynamic permeability of thin NiFe layers. J. Appl. Phys. 95(11), 6873 (2004).

    Article  CAS  Google Scholar 

  20. Y. Lamy and B. Viala: NiMn, IrMn, and NiO exchange coupled CoFe multilayers for microwave applications. IEEE Trans. Magn. 42(10), 3332 (2006).

    Article  CAS  Google Scholar 

  21. N.N. Phuoc, S.L. Lim, F. Xu, Y.G. Ma, and C.K. Ong: Enhancement of exchange bias and ferromagnetic resonance frequency by using multilayer antidot arrays. J. Appl. Phys. 104(9), 093708 (2008).

    Article  CAS  Google Scholar 

  22. N.N. Phuoc, F. Xu, and C.K. Ong: Ultrawideband microwave noise filter: Hybrid antiferromagnet/ferromagnet exchange-coupled multilayers. Appl. Phys. Lett. 94(9), 092505 (2009).

    Article  CAS  Google Scholar 

  23. K. O’Grady, L.E. Fernandez-Outon, and G. Vallejo-Fernandez: A new paradigm for exchange bias in polycrystalline thin films. J. Magn. Magn. Mater. 322(8), 883 (2010).

    Article  CAS  Google Scholar 

  24. X. Chen, Y.G. Ma, and C.K. Ong: Magnetic anisotropy and resonance frequency of patterned soft magnetic strips. J. Appl. Phys. 104(1), 013921 (2008).

    Article  CAS  Google Scholar 

  25. G. Chai, Y. Yang, J. Zhu, M. Lin, W. Sui, D. Guo, X. Li, and D. Xue: Adjust the resonance frequency of (Co90Nb10/Ta)n multilayers from 1.4 to 6.5 GHz by controlling the thickness of Ta interlayers. Appl. Phys. Lett. 96(1), 012505 (2010).

    Article  CAS  Google Scholar 

  26. N.N. Phuoca, L.T. Hungb, and C.K. Ong: Ultra-high ferromagnetic resonance frequency in exchange-biased system. J. Alloys Compd. 506(2), 504 (2010).

    Article  CAS  Google Scholar 

  27. K. Takano, R.H. Kodama, A.E. Berkowitz, W. Cao, and G. Thomas: Interfacial uncompensated antiferromagnetic spins: role in unidirectional anisotropy in polycrystalline Ni81Fe19/CoO bilayers. Phys. Rev. Lett. 79(6), 1130 (1997).

    Article  CAS  Google Scholar 

  28. K. Takano, R.H. Kodama, A.E. Berkowitz, W. Cao, and G. Thomas: Role of interfacial uncompensated antiferromagnetic spins in unidirectional anisotropy in Ni81Fe19/CoO bilayers. J. Appl. Phys. 83(11), 6888 (1998).

    Article  CAS  Google Scholar 

  29. M.D. Stiles and R.D. McMichael: Model for exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys. Rev. B 59(5), 3722 (1999).

    Article  CAS  Google Scholar 

  30. T.J. Moran, J.M. Gallego, and I.K. Schuller: Increased exchange anisotropy due to disorder at permalloy/CoO interfaces. J. Appl. Phys. 78(3), 1887 (1995).

    Article  CAS  Google Scholar 

  31. J. Nogués, T.J. Moran, D. Lederman, I.K. Schuller, and K.V. Rao: Role of interfacial structure on exchange-biased FeF2−Fe. Phys. Rev. B 59(10), 6984 (1999).

    Article  Google Scholar 

  32. A. Scholl, F. Nolting, J. Stohr, T. Regan, J. Luning, J.W. Seo, J-P. Locquet, J. Fompeyrine, S. Anders, H. Ohldag, and H.A. Padmore: Exploring the microscopic origin of exchange bias with photoelectron emission microscopy. J. Appl. Phys. 89(11), 7266 (2001).

    Article  CAS  Google Scholar 

  33. W. Kuch, F. Offi, L.I. Chelaru, M. Kotsugi, K. Fukumoto, and J. Kirschner: Magnetic interface coupling in single-crystalline Co/Fe Mn bilayers. Phys. Rev. B 65(14), 140408(R) (2002).

    Article  CAS  Google Scholar 

  34. B. Martinez, X. Obradors, Ll. Balcells, A. Rouanet, and C. Monty: Low temperature surface spin-glass transition in γ-Fe2O3 nanoparticles. Phys. Rev. Lett. 80(1), 181 (1998).

    Article  CAS  Google Scholar 

  35. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J. Nogues: Beating the superparamagnetic limit with exchange bias. Nature 423, 850 (2003).

    Article  CAS  Google Scholar 

  36. S.G. te Velthuis, G.P. Felcher, J.S. Jiang, A. Inomata, C.S. Nelson, A. Berger, and S.D. Bader: Magnetic configurations in exchange-biased double superlattices. Appl. Phys. Lett. 75(26), 4174 (1999).

    Article  Google Scholar 

  37. F-T. Yuan, J-K. Lin, Y.D. Yao, and S-F. Lee: Exchange bias in spin glass (FeAu)/NiFe thin films. Appl. Phys. Lett. 96(16), 162502 (2010).

    Article  CAS  Google Scholar 

  38. D.L. Peng, K. Sumiyama, T. Hihara, S. Yamamuro, and T.J. Konno: Magnetic properties of monodispersed Co/CoO clusters. Phys. Rev. B 61(4), 3103 (2000).

    Article  CAS  Google Scholar 

  39. A.P. Malozemoff: Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B 35(7), 3679 (1987).

    Article  CAS  Google Scholar 

  40. D. Mauri, H.C. Siegmann, P.S. Bagus, and E. Kay: Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate. J. Appl. Phys. 62(7), 3047 (1987).

    Article  Google Scholar 

  41. N. Koon: Calculations of exchange bias in thin films with ferromagnetic/antiferromagnetic interfaces. Phys. Rev. Lett. 78(25), 4865 (1997).

    Article  CAS  Google Scholar 

  42. T.C. Schulthess and W.H. Butler: Consequences of spin-flop coupling in exchange biased films. Phys. Rev. Lett. 81(20), 4516 (1998).

    Article  CAS  Google Scholar 

  43. L. Wee, R.L. Stamps, and R.E. Camley: Temperature dependence of domain-wall bias and coercivity. J. Appl. Phys. 89(11), 6913 (2001).

    Article  CAS  Google Scholar 

  44. T.C. Schulthess and W.H. Butler: Coupling mechanisms in exchange biased films. J. Appl. Phys. 85(8), 5510 (1999).

    Article  CAS  Google Scholar 

  45. A.P. Malozemoff: Mechanisms of exchange anisotropy. J. Appl. Phys. 63(8), 3874 (1988).

    Article  Google Scholar 

  46. J.R.L. de Almeida and S.M. Rezende: Microscopic model for exchange anisotropy. Phys. Rev. B 65(9), 092412 (2002).

    Article  CAS  Google Scholar 

  47. U. Nowak, A. Misra, and K.D. Usadel: Domain state model for exchange bias. J. Appl. Phys. 89(11), 7269 (2001).

    Article  CAS  Google Scholar 

  48. H. Xi and R.M. White: Antiferromagnetic thickness dependence of exchange biasing. Phys. Rev. B 61(1), 80 (2000).

    Article  CAS  Google Scholar 

  49. E. Fulcomer and S.H. Charap: Thermal fluctuation aftereffect model for some systems with ferromagnetic-antiferromagnetic coupling. J. Appl. Phys. 43(10), 4190 (1972).

    Article  Google Scholar 

  50. S. Soeya, T. Imagawa, S. Mitsuoka, and S. Narishige: Distribution of blocking temperature in bilayered Ni81Fe19/NiO films. J. Appl. Phys. 76(9), 5356 (1994).

    Article  CAS  Google Scholar 

  51. V. Baltz, J. Sort, B. Rodmacq, B. Dieny, and S. Landis: Thermal activation effects on the exchange bias in ferromagnetic-antiferromagnetic nanostructures. Phys. Rev. B 72(10), 104419 (2005).

    Article  CAS  Google Scholar 

  52. V. Baltz, B. Rodmacq, A. Zarefy, L. Lechevallier, and B. Dieny: Bimodal distribution of blocking temperature in exchange-biased ferromagnetic/antiferromagnetic bilayers. Phys. Rev. B 81(5), 052404 (2010).

    Article  CAS  Google Scholar 

  53. C.K. Safeer, M. Chamfrault, J. Allibe, C. Carretero, C. Deranlot, E. Jacquet, J-F. Jacquot, M. Bibes, A. Barthelemy, B. Dieny, H. Bea, and V. Baltz: Anisotropic bimodal distribution of blocking temperature with multiferroic BiFeO3 epitaxial thin films. Appl. Phys. Lett. 100(7), 072402 (2012).

    Article  CAS  Google Scholar 

  54. J. Ventura, J.P. Araujo, J.B. Sousa, A. Veloso, and P.P. Freitas: Distribution of blocking temperatures in nano-oxide layers of specular spin valves. J. Appl. Phys. 101(11), 113901 (2007).

    Article  CAS  Google Scholar 

  55. M. Ali, P. Adie, C.H. Marrows, D. Greig, B.J. Hickey, and R.L. Stamps: Exchange bias using a spin glass. Nat. Mater. 6, 70 (2007).

    Article  CAS  Google Scholar 

  56. F.T. Yuan, Y.D. Yao, S.F. Lee, and J.H. Hsu: Coercive mechanism and training effect in Fe-Au/Ni-Fe bilayer films. J. Appl. Phys. 109(7), 07E148 (2011).

    Article  CAS  Google Scholar 

  57. A.G. Biternas, U. Nowak, and R.W. Chantrell: Training effect of exchange-bias bilayers within the domain state model. Phys. Rev. B 80(13), 134419 (2009).

    Article  CAS  Google Scholar 

  58. M. Gruyters: Spin-glass-like behavior in CoO nanoparticles and the origin of exchange bias in layered CoO/ferromagnet structures. Phys. Rev. Lett. 95(7), 077204 (2005).

    Article  CAS  Google Scholar 

  59. A. Ercole, T. Fujimoto, M. Patel, C. Daboo, R.J. Hicken, and A.C. Bland: Direct measurement of magnetic anisotropies in epitaxial FeNi/Cu/Co spin-valve structures by Brillouin light scattering. J. Magn. Magn. Mater. 156(1–3), 121 (1996).

    Article  CAS  Google Scholar 

  60. B.H. Miller and E. Dan Dahlberg: Use of the anisotropic magnetoresistance to measure exchange anisotropy in Co/CoO bilayers. Appl. Phys. Lett. 69(25), 3932 (1996).

    Article  CAS  Google Scholar 

  61. V. Strom, B.J. Jonsson, K.V. Rao, and D. Dahlberg: Determination of exchange anisotropy by means of ac susceptometry in Co/CoO bilayers. J. Appl. Phys. 81(8), 5003 (1997).

    Article  CAS  Google Scholar 

  62. F.B. Abdulahad, D.S. Hung, Y.C. Chiu, and S.F. Lee: Exchange bias effect on the relaxation behavior of the IrMn/NiFe bilayer system. IEEE Trans. Magn. 47(10), 4227 (2011).

    Article  CAS  Google Scholar 

  63. T.G. Philipps and H.M. Rosenberg: Spin waves in ferromagnets. Rep. Prog. Phys. 29(1), 285 (1966).

    Article  Google Scholar 

  64. B. Heinrich and J.F. Cochran: Ultrathin metallic magnetic films: Magnetic anisotropies and exchange interactions. Adv. Phys. 42(5), 523 (1993).

    Article  CAS  Google Scholar 

  65. M. Farle: Ferromagnetic resonance of ultrathin metallic layers. Rep. Prog. Phys. 61(7), 755 (1998).

    Article  CAS  Google Scholar 

  66. J.D. Adam and S.N. Stitzer: A magnetostatic wave signal-to-noise enhancer. Appl. Phys. Lett. 36(6), 485 (1980).

    Article  CAS  Google Scholar 

  67. W.S. Ishak: Magnetostatic wave technology: A review. Proc. IEEE 76(2), 171 (1988).

    Article  Google Scholar 

  68. H. How, W. Hu, C. Vittoria, L.C. Kempel, and K.D. Trott: Single-crystal yttrium iron garnet phase shifter at X band. J. Appl. Phys. 85(8), 4853 (1999).

    Article  CAS  Google Scholar 

  69. N. Cramer, D. Lucic, R.E. Camley, and Z. Celinski: High attenuation tunable microwave notch filters utilizing ferromagnetic resonance. J. Appl. Phys. 87(9), 6911 (2000).

    Article  CAS  Google Scholar 

  70. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M. L. Roukes, A.Y. Chtchelkanova, and D.M. Treger: Spintronics: A spin-based electronics vision for the future. Science 294, 1488 (2001).

    Article  CAS  Google Scholar 

  71. K.A. Seu, H. Huang, J.F. Lesoine, H.D. Showman, W.F. Egelhoff, L. Gan, and A.C. Reilly: Co layer thickness dependence of exchange biasing for IrMn/Co and FeMn/Co. J. Appl. Phys. 93(10), 6611 (2003).

    Article  CAS  Google Scholar 

  72. R. Jungblut, R. Coehoorn, M.T. Johnson, J. aan de Stegge, and A. Reinders: Orientational dependence of the exchange biasing in molecular-beam-epitaxy-grown Ni80Fe20/Fe50Mn50 bilayers. J. Appl. Phys. 75(10), 6659 (1994).

    Article  CAS  Google Scholar 

  73. N.N. Phuoc, H.Y. Chen, and C.K. Ong: Effect of antiferromagnetic thickness on thermal stability of static and dynamic magnetization of NiFe/FeMn multilayers. J. Appl. Phys. 113(6), 063913 (2013).

    Article  CAS  Google Scholar 

  74. M. Ali, C.H. Marrows, M. Al-Jawad, B.J. Hickey, A. Misra, U. Nowak, and K.D. Usadel: Antiferromagnetic layer thickness dependence of the IrMn/Co exchange-bias system. Phys. Rev. B 68(21), 214420 (2003).

    Article  CAS  Google Scholar 

  75. M. Gloanec, S. Rioual, B. Lescop, R. Zuberek, R. Szymczak, P. Aleshkevych, and B. Rouvellou: Temperature dependence of exchange bias in NiFe/FeMn bilayers. Phys. Rev. B 82(14), 144433 (2010).

    Article  CAS  Google Scholar 

  76. H.Y. Chen, N. N. Phuoc, and C. K. Ong: Thermal stability of exchange-biased NiFe/FeMn multilayered thin films. J. Appl. Phys. 112(5), 053920 (2012).

    Article  CAS  Google Scholar 

  77. J. McCord, R. Mattheis, and D. Elefant: Dynamic magnetic anisotropy at the onset of exchange bias: The NiFe/IrMn ferromagnet/antiferromagnet. Phys. Rev. B 70(9), 094420 (2004).

    Article  CAS  Google Scholar 

  78. K. Steenbeck, R. Mattheis, and M. Diegel: Antiferromagnetic energy loss and exchange coupling of IrMn/CoFe films: Experiments and simulations. J. Magn. Magn. Mater. 279(2–3), 317 (2004).

    Article  CAS  Google Scholar 

  79. J. McCord, R. Kaltofen, T. Gemming, R. Hühne, and L. Schultz: Aspects of static and dynamic magnetic anisotropy in Ni81Fe19-NiO films. Phys. Rev. B 75(13), 134418 (2007).

    Article  CAS  Google Scholar 

  80. H.Y. Liu, Z.K. Wang, H.S. Lim, S.C. Ng, M.H. Kuok, D.J. Lockwood, M.G. Cottam, K. Nielsch, and U. Gösele: Magnetic-field dependence of spin waves in ordered permalloy nanowire arrays in two dimensions. J. Appl. Phys. 98(4), 046103 (2005).

    Article  CAS  Google Scholar 

  81. J.B. Youssef, V. Castel, N. Vukadinovic, and M. Labrune: Spin-wave resonances in exchange-coupled permalloy/garnet bilayers. J. Appl. Phys. 108(6), 063909 (2010).

    Article  CAS  Google Scholar 

  82. A.A. Awad, A. Lara, V. Metlushko, K.Y. Guslienko, and F.G. Aliev: Broadband probing magnetization dynamics of the coupled vortex state permalloy layers in nanopillars. Appl. Phys. Lett. 100(26), 262406 (2012).

    Article  CAS  Google Scholar 

  83. M. Demand, A.E. Oropesa, S. Kenane, U. Ebels, I. Huynen, and L. Piraux: Ferromagnetic resonance studies of nickel and permalloy nanowire arrays. J. Magn. Magn. Mater. 249(1–2), 228 (2002).

    Article  CAS  Google Scholar 

  84. C.S. Lin, H.S. Lim, Z.K. Wang, S.C. Ng, and M.H. Kuok: Band gap parameters of one-dimensional bicomponent nanostructured magnonic crystals. Appl. Phys. Lett. 98(2), 022504 (2011).

    Article  CAS  Google Scholar 

  85. K. Fukumoto, W. Kuch, J. Vogel, J. Camarero, S. Pizzini, F. Offi, Y. Pennec, M. Bonfim, A. Fontaine, and J. Kirschner: Mobility of domain wall motion in the permalloy layer of a spin-valve-like Fe20Ni80/Cu/Co trilayer. J. Magn. Magn. Mater. 293(3), 863 (2005).

    Article  CAS  Google Scholar 

  86. J. Mathon and S.B. Ahmad: Quasi-two-dimensional behavior of the surface magnetization in a ferromagnet with softened surface exchange. Phys. Rev. B 37(1), 660 (1988).

    Article  CAS  Google Scholar 

  87. C. Kittel: Introduction to Solid State Physics, 8th ed. (John Wiley & Sons, New York, NY, 2005).

    Google Scholar 

  88. H. Xi, J. Rantschler, S Mao, M.T. Kief, and R.M. White: Interface coupling and magnetic properties of exchange-coupled Ni81Fe19/Ir22Mn78 bilayers. J. Phys. D: Appl. Phys. 36(13), 1464 (2003).

    Article  CAS  Google Scholar 

  89. D. Tripathy, A.O. Adeyeye, and N. Singh: Exchange bias in nanoscale antidot arrays. Appl. Phys. Lett. 93(2), 022502 (2008).

    Article  CAS  Google Scholar 

  90. J.V. Kim and R.L. Stamps: Hysteresis from antiferromagnet domain-wall processes in exchange-biased systems: Magnetic defects and thermal effects. Phys. Rev. B 71(9), 094405 (2005).

    Article  CAS  Google Scholar 

  91. V.I. Nikitenko, V.S. Gornakov, A.J. Shapiro, R.D. Shull, K. Liu, S.M. Zhou, and C.L. Chien: Asymmetry in elementary events of magnetization reversal in a ferromagnetic/antiferromagnetic bilayer. Phys. Rev. Lett. 84(4), 765 (2000).

    Article  CAS  Google Scholar 

  92. C. Leighton, M.R. Fitzsimmons, A. Hoffmann, J. Dura, C.F. Majrkzak, M.S. Lund, and I.K. Schuller: Thickness-dependent coercive mechanisms in exchange-biased bilayers. Phys. Rev. B 65(6), 064403 (2002).

    Article  CAS  Google Scholar 

  93. N.P. Aley, G.V. Fernandez, R. Kroeger, B. Lafferty, J. Agnew, Y. Lu, and K. O’Grady: Texture effects in IrMn/CoFe exchange bias systems. IEEE Trans. Magn. 44(11), 2820 (2008).

    Article  CAS  Google Scholar 

  94. M. Ali, C.H. Marrows, and B.J. Hickey: Onset of exchange bias in ultrathin antiferromagnetic layers. Phys. Rev. B 67(17), 172405 (2003).

    Article  CAS  Google Scholar 

  95. T. Ambrose and C.L. Chien: Dependence of exchange coupling on antiferromagnetic layer thickness in NiFe/CoO bilayers. J. Appl. Phys. 83(11), 6822 (1998).

    Article  CAS  Google Scholar 

  96. M.D. Stiles and R.D. McMichael: Temperature dependence of exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys. Rev. B 60(18), 12950 (1999).

    Article  CAS  Google Scholar 

  97. G.V. Fernandez, L.E.F. Outon, and K. O’Grady: Antiferromagnetic grain volume effects in metallic polycrystalline exchange bias systems. J Phys. D: Appl. Phys. 41(11), 112001 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Science Council and the Taiwan International Graduate Program, Academia Sinica, Taiwan, Republic of China. The technical help of Christine Lu is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Fan Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulahad, F.B., Hung, DS. & Lee, SF. Temperature dependence of static and dynamic magnetic properties in NiFe/IrMn bilayer system. Journal of Materials Research 29, 1237–1247 (2014). https://doi.org/10.1557/jmr.2014.108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.108

Navigation