Skip to main content
Log in

Thermal and plastic behavior of nanoglasses

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanical and thermal behavior of nanoglasses (NGs) were studied with a focus on the effect of the microstructure. The thermal expansion was measured to track changes in excess free volume during heating. It was found that the excess free volume, which is initially more dominant in the interphase region between the denser amorphous particles, is partially lost as well as redistributed during annealing. This relaxation during heating causes the nanoglass to behave like a melt-spun ribbon after heating while remaining amorphous. Nanomechanical tests were used to probe the local incipient plasticity and the influence of the interphase region. This interphase appears to affect the mechanical response of the NGs by inhibiting the propagation of shear bands and thus offers a novel approach for the introduction of plasticity in bulk metallic glasses. The results suggest that the NGs consist of two distinct amorphous phases with different glass transition temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. M. Ghafari, H. Hahn, H. Gleiter, Y. Sakurai, M. Itou, and S. Kamali: Evidence of itinerant magnetism in a metallic nanoglass. Appl. Phys. Lett. 101 (24), 243104 (2012).

    Article  Google Scholar 

  2. J.X. Fang, U. Vainio, W. Puff, R. Wurschum, X.L. Wang, D. Wang, M. Ghafari, F. Jiang, J. Sun, H. Hahn, and H. Gleiter: Atomic structure and structural stability of Sc75Fe25 nanoglasses. Nano Lett. 12 (1), 458 (2012).

    Article  CAS  Google Scholar 

  3. M. Ghafari, S. Kohara, H. Hahn, H. Gleiter, T. Feng, R. Witte, and S. Kamali: Structural investigations of interfaces in Fe90Sc10 nanoglasses using high-energy x-ray diffraction. Appl. Phys. Lett. 100 (13), 133111 (2012).

    Article  Google Scholar 

  4. H. Gleiter: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48 (1), 1 (2000).

    Article  CAS  Google Scholar 

  5. X.D. Wang, Q.P. Cao, J.Z. Jiang, H. Franz, J. Schroers, R.Z. Valiev, Y. Ivanisenko, H. Gleiter, and H.J. Fecht: Atomic-level structural modifications induced by severe plastic shear deformation in bulk metallic glasses. Scr. Mater. 64 (1), 81 (2011).

    Article  CAS  Google Scholar 

  6. X.T.S.N. Chen, A. Takeuchi, K.S. Nakayama, H.K. Wu, M. Esashi, A. Inoue, and D.V. Louzguine-Luzgin: A representative of a new class of materials: Nanograined metallic glasses showing unique properties. AIP Conf. Proc. 1518, 682 (2013).

    Article  CAS  Google Scholar 

  7. Y. Ritter, D. Sopu, H. Gleiter, and K. Albe: Structure, stability and mechanical properties of internal interfaces in Cu64Zr36 nanoglasses studied by MD simulations. Acta Mater. 59 (17), 6588 (2011).

    Article  CAS  Google Scholar 

  8. D. Sopu, K. Albe, Y. Ritter, and H. Gleiter: From nanoglasses to bulk massive glasses. Appl. Phys. Lett. 94 (19), 191911 (2009).

    Article  Google Scholar 

  9. C.A. Schuh, A.C. Lund, and T.G. Nieh: New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52 (20), 5879 (2004).

    Article  CAS  Google Scholar 

  10. C.A. Schuh and T.G. Nieh: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51 (1), 87 (2003).

    Article  CAS  Google Scholar 

  11. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55 (12), 4067 (2007).

    Article  CAS  Google Scholar 

  12. A.S. Argon: Plastic-deformation in metallic glasses. Acta Metall. 27 (1), 47 (1979).

    Article  CAS  Google Scholar 

  13. C. Suryanarayana: Mechanical behavior of emerging materials. Mater. Today 15 (11), 486 (2012).

    Article  CAS  Google Scholar 

  14. C.C. Hays, C.P. Kim, and W.L. Johnson: Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersion. Mater. Sci. Eng., A 304–306, 650 (2001).

    Article  Google Scholar 

  15. M. Calin, J. Eckert, and L. Schultz: Improved mechanical behavior of Cu–Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scr. Mater. 48 (6), 653 (2003).

    Article  CAS  Google Scholar 

  16. J. Eckert, J. Das, S. Pauly, C. Duhamel, K.B. Kim, S. Yi, and W.H. Wang: Impact of microstructural inhomogenities on the ductility of bulk metallic glasses. Mater. Trans. 48 (7), 1806 (2007).

    Article  CAS  Google Scholar 

  17. Y.M. Chen, T. Ohkubo, T. Mukai, and K. Hono: Structure of shear bands in Pd40Ni40P20 bulk metallic glass. J. Mater. Res. 24 (1), 1 (2009).

    Article  Google Scholar 

  18. Y. Shi and M.L. Falk: Does metallic glass have a backbone? The role of percolating short range order in strength and failure. Scr. Mater. 54 (3), 381 (2006).

    Article  CAS  Google Scholar 

  19. Y. Ritter and K. Albe: Thermal annealing of shear bands in deformed metallic glasses: Recovery mechanisms in Cu64Zr36 studied by molecular dynamics simulations. Acta Mater. 59 (18), 7082 (2011).

    Article  CAS  Google Scholar 

  20. C.A. Pampillo: Localized shear deformation in a glassy metal. Scr. Metall. 6 (10), 915 (1972).

    Article  CAS  Google Scholar 

  21. F.E.P.W.H. Jiang and M. Atzmon: Mechanical behavior of shear bands and the effect of their relaxation in a rolled amorphous Al-based alloy. Acta Mater. 53, 3469 (2005).

    Article  CAS  Google Scholar 

  22. G.W. Koebrugge, J. Sietsma, and A. van den Beukel: Structural relaxation in amorphous Pd40Ni40P20. Acta Metall. Mater. 40 (4), 753 (1992).

    Article  CAS  Google Scholar 

  23. Y. Shibutani, M. Wakeda, S. Ogata, and J. Park: Computational relationship of deformation behavior and materials strength of amorphous alloys to short-ranged local structures. In THERMEC 2006, Pts 1–5, T. Chandra, K. Tsuzaki, M. Militzer, and C. Ravindran eds.; Trans Tech Publications Ltd: Switzerland, 2007, 1911.

    Google Scholar 

  24. N. Chen, D.V. Louzguine-Luzgin, G.Q. Xie, P. Sharma, J.H. Perepezko, M. Esashi, A.R. Yavari, and A. Inoue: Structural investigation and mechanical properties of a representative of a new class of materials: nanograined metallic glasses. Nanotechnology 24 (4), 045610 (2013).

    Article  CAS  Google Scholar 

  25. J.X. Fang, U. Vainio, W. Puff, R. Wurschum, X.L. Wang, D. Wang, M. Ghafari, F. Jiang, J. Sun, H. Hahn, and H. Gleiter: Atomic structure and structural stability of Sc75Fe25 nanoglasses. Nano Lett. 12 (9), 5058 (2012).

    Article  CAS  Google Scholar 

  26. C. Eberl, D.S. Gianola, and K.J. Hemker: Mechanical characterization of coatings using microbeam bending and digital image correlation techniques. Exp. Mech. 50 (1), 85 (2010).

    Article  CAS  Google Scholar 

  27. A.R. Yavari, A.L. Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M. Di Michiel, and Ö. Kvick: Excess free volume in metallic glasses measured by x-ray diffraction. Acta Mater. 53 (6), 1611 (2005).

    Article  CAS  Google Scholar 

  28. N. Chen, R. Frank, N. Asao, D.V. Louzguine-Luzgin, P. Sharma, J.Q. Wang, G.Q. Xie, Y. Ishikawa, N. Hatakeyama, Y.C. Lin, M. Esashi, Y. Yamamoto, and A. Inoue: Formation and properties of Au-based nanograined metallic glasses. Acta Mater. 59 (16), 6433 (2011).

    Article  CAS  Google Scholar 

  29. C.E. Packard, O. Franke, E.R. Homer, and C.A. Schuh: Nanoscale strength distribution in amorphous versus crystalline metals. J. Mater. Res. 25 (12), 2251 (2010).

    Article  CAS  Google Scholar 

  30. C.E. Packard and C.A. Schuh: Initiation of shear bands near a stress concentration in metallic glass. Acta Mater. 55 (16), 5348 (2007).

    Article  CAS  Google Scholar 

  31. Y.F. Shi and M.L. Falk: Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Mater. 55 (13), 4317 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Dr. Tao Feng (KIT) for preparing the nanoglass samples. The discussions with Dr. Chris Eberl (KIT) on the DIC and Prof. Andrea Hodge (USC) are gratefully acknowledged. We would also like to thank Dr. Ruth Schwaiger (KIT) for providing access to the MTS/Agilent nanoindenter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Franke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franke, O., Leisen, D., Gleiter, H. et al. Thermal and plastic behavior of nanoglasses. Journal of Materials Research 29, 1210–1216 (2014). https://doi.org/10.1557/jmr.2014.101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.101

Navigation