Skip to main content
Log in

Rapid solidification behavior of Cu–Co–Fe alloy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The ternary Cu–Co–Fe alloy was rapidly solidified by using the high pressure gas atomization technique. Powders with a well-dispersed microstructure resulting from the liquid–liquid phase transformation were obtained. A model describing the microstructure evolution in an atomized drop during the liquid–liquid phase transformation was developed. The kinetic details of the liquid–liquid phase transformation were discussed. The numerical results show a favorable agreement with the experimental ones. They demonstrate that under the rapid cooling conditions of gas atomization, the spatial phase separation due to the Marangoni migration of the minority phase droplets is very weak. Also, the effect of Ostwald coarsening of the minority phase droplets on the microstructure is negligible. For Cu-10 wt% Co-10 wt% Fe alloy, the average radius and number density of the Fe–Co-rich particles depend exponentially on the cooling rate of the melt during the nucleation period of the Fe–Co-rich droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE I.
TABLE II.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. C. Biselli and D.G. Morris: Microstructure and strength of Cu-Fe in situ composites after very high drawing strains. Acta Mater. 44, 493–504 (1996).

    Article  CAS  Google Scholar 

  2. A.E. Berkowitz, J.R. Mitchell, M.J. Carey, A.P. Young, S. Zhang, F.E. Spada, F.T. Parker, A. Hutten, and G. Thomas: Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys. Rev. Lett. 68, 3745–3748 (1992).

    Article  CAS  Google Scholar 

  3. A. Munitz, S.P. Elder-Randall, and R. Abbaschian: Supercooling effects in Cu-10 Wt Pct Co alloys solidified at different cooling rates. Metall. Mater. Trans. A 23A, 1817–1827 (1992).

    Article  CAS  Google Scholar 

  4. Y. Nakagawa: Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state. Acta Metall. 6, 704–711 (1958).

    Article  CAS  Google Scholar 

  5. C.D. Cao, D.M. Herlach, M. Kolbe, G.P. Görler, and B. Wei: Rapid solidification of Cu84Co16 alloy undercooled into the metastable miscibility gap under different conditions. Scr. Mater. 48, 5–9 (2003).

    Article  CAS  Google Scholar 

  6. J.J. Guo, Y. Liu, J. Jia, Y.Q. Su, and H.S. Ding: Coarsening process of minority phase droplets during rapidly cooling an immiscible alloy through the miscibility gap. Acta. Metall. Sin. 37, 363–368 (2001).

    CAS  Google Scholar 

  7. M.A. Turchanin, L.A. Dreval, A.R. Abdulov, and P.G. Agraval: Mixing enthalpies of liquid alloys and thermodynamic assessment of the Cu-Fe-Co system. Powder Metall. Met. Ceram. 50, 98–116 (2011).

    Article  CAS  Google Scholar 

  8. D.I. Kim and R. Abbaschian: The metastable liquid miscibility gap in Cu-Co-Fe alloys. J. Phase Equilib. 21, 25–31 (2000).

    Article  CAS  Google Scholar 

  9. A. Munitz, A.M. Bamberger, S. Wannaparhun, and R. Abbaschian: Effects of supercooling and cooling rate on the microstructure of Cu-Co-Fe alloys. J. Mater. Sci. 41, 2749–2759 (2006).

    Article  CAS  Google Scholar 

  10. S. Curiotto, L. Battezzati, E. Johnson, M. Palumbo, and N. Pryds: The liquid metastable miscibility gap in the Cu-Co-Fe system. J. Mater. Sci. 43, 3253–3258 (2008).

    Article  CAS  Google Scholar 

  11. M. Bamberger, A. Munitz, L. Kaufman, and R. Abbaschian: Evaluation of the stable and metastable Cu-Co-Fe phase diagrams. Calphad 26, 375–384 (2002).

    Article  CAS  Google Scholar 

  12. C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida: Phase equilibria in Fe-Cu-X (X: Co, Cr, Si, V) ternary systems. J. Phase. Equilib. 23, 236–245 (2002).

    Article  CAS  Google Scholar 

  13. M. Palumbo, S. Curiotto, and L. Battezzati: Thermodynamic analysis of the stable and metastable Co-Cu and Co-Cu-Fe phase diagrams. Calphad 30, 171–178 (2006).

    Article  CAS  Google Scholar 

  14. F.P. Dai, C.D. Cao, and B.B. Wei: Phase separation and rapid solidification of liquid Cu60Fe30Co10 ternary peritectic alloy. Sci. China, Ser. G 50, 509–518 (2007).

    Article  CAS  Google Scholar 

  15. L. Granasy and L. Ratke: Homogeneous nucleation within the liquid miscibility gap of Zn-Pb alloys. Scr. Mater. 28, 1329–1334 (1993).

    Article  CAS  Google Scholar 

  16. J.Z. Zhao, L. Ratke, and B. Feuerbacher: Microstructure evolution of immiscible alloys during cooling through the miscibility gap. Modell. Simul. Mater. Sci. Eng. 6, 123–139 (1998).

    Article  CAS  Google Scholar 

  17. J.A. Marqusee and J. Ross: Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction. J. Chem. Phys. 80, 536–543 (1984).

    Article  CAS  Google Scholar 

  18. J.Z. Zhao: The kinetics of the liquid-liquid decomposition under the rapid solidification conditions of gas atomization. Mater. Sci. Eng., A 454–455, 637–640 (2007).

    Article  Google Scholar 

  19. W.E. Ranz and W.R. Marshall: Evaporation from drops. Chem. Eng. Prog. 48, 141–146 (1952).

    CAS  Google Scholar 

  20. P.S. Grant, B. Cantor, and L. Katgerman: Modelling of droplet dynamic and thermal histories during spray forming I. Individual droplet behavior. Acta Metall. Mater. 41, 3097–3108 (1993).

    Article  CAS  Google Scholar 

  21. S.V. Patankar: Numerical Heat Transfer and Fluid Flow (McGraw-Hill, New York, 1980).

    Google Scholar 

  22. A.T. Dinsdale: SGTE data for pure elements. Calphad 15, 317–425 (1991).

    Article  CAS  Google Scholar 

  23. M.A. Turchanin and P.G. Agraval: Phase equilibria and thermodynamics of binary copper systems with 3d-metals. V. Copper–cobalt system. Powder Metall. Met. Ceram. 46, 77–89 (2007).

    Article  CAS  Google Scholar 

  24. M.A. Turchanin, P.G. Agraval, and I.V. Nikolaenko: Thermodynamics of alloys and phase equilibria in the copper–iron system. J. Phase Equilib. 24, 307–319 (2003).

    Article  CAS  Google Scholar 

  25. I. Ohnuma, H. Enoki, O. Ikeda, R. Kainuma, H. Ohtani, B. Sundman, and K. Ishida: Phase equilibria in the Fe–Co binary system. Acta Mater. 50, 379–393 (2002).

    Article  CAS  Google Scholar 

  26. G. Kaptay: On the temperature gradient induced interfacial gradient force, acting on precipitated liquid droplets in monotectic liquid alloys. Mater. Sci. Forum 508, 269–274 (2006).

    Article  CAS  Google Scholar 

  27. M.R. Moldover: Interfacial tension of fluids near critical points and two-scale-factor universality. Phys. Rev. A 31, 1022–1033 (1985).

    Article  CAS  Google Scholar 

  28. E.A. Brandes and G.B. Brook (eds.): Smithells Metals Reference Book, 7th ed. (Butterworth-Heinemann, Oxford, 1992).

    Google Scholar 

  29. A.I. Pommrich, A. Meyer, D. Holland-Moritz, and T. Unruh: Nickel self-diffusion in silicon-rich Si-Ni melts. Appl. Phys. Lett. 92, 241922 (2008).

    Article  Google Scholar 

  30. A.K. Roy and R.P. Chhabra: Prediction of solute diffusion coefficients in liquid metals. Metall. Trans. A 19A, 273–279 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 51031003, 51071159, and 51271185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiu Zhou Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Zhao, J.Z. Rapid solidification behavior of Cu–Co–Fe alloy. Journal of Materials Research 28, 1203–1210 (2013). https://doi.org/10.1557/jmr.2013.75

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.75

Navigation