Skip to main content
Log in

Hetoroporous heterogeneous ceramics for reusable thermal protection systems

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Reusable thermal protection systems of reentry vehicles are adopted for temperatures ranging between 1000 and 2000 °C, when gas velocity and density are relatively low; they exploit the low thermal conductivity of their constituent materials. This paper presents a new class of light structural thermal protection systems comprised of a load bearing structure made of a macroporous reticulated SiSiC, filled with compacted short alumina/mullite fibers. Their manufacturing process is very simple and does not require special devices or ambient conditions. The produced hetoroporous heterogeneous ceramics showed high radiations shielding capabilities up to 2000 °C in vacuum. Even after repeated exposures at higher temperatures, a significant degradation of the SiSiC scaffold was not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
TABLE II.
FIG. 2.
FIG. 3.
TABLE III.
FIG. 4.
TABLE IV.
FIG. 5.
TABLE V.
FIG. 6.

Similar content being viewed by others

References

  1. P.A. Gnoffo: Planetary-entry gas dynamics. Annu. Rev. Fluid Mech. 31, 459 (1999).

    Article  Google Scholar 

  2. J.J. Bertin and R.M. Cummings: Critical hypersonic aerothermodynamic phenomena. Annu. Rev. Fluid Mech. 38, 129 (2006).

    Article  Google Scholar 

  3. S.M. Johnson: Approach to TPS development for hypersonic applications at NASA AMES research center, in 5th European Workshop on Thermal Protection Systems and Hot Structures, edited by K. Fletcher (ESA SP-631, European Space Agency, 2006), p. 1.

  4. F.I. Hurwitz: Thermal protection systems (TPSs), in Encyclopedia of Aerospace Engineering, edited by R. Blockley and W. Shyy (John Wiley & Sons, Ltd., New York, NY, 2010).

    Google Scholar 

  5. S.J. Scotti, C. Clay, and M. Rezin: Structures and materials technologies for extreme environments applied to reusable launch vehicles, in AIAA/ICAS International Symposium and Exposition (AIAA, 2003).

  6. D.E. Glass: Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles, in 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference (AIAA, 2008), p. 2008.

  7. D.E. Glass: European directions for hypersonic thermal protection systems and hot structures, in 31st Annual Conference on Composite Materials and Structures (USACA, 2007).

  8. W.P.P. Fischer: Thermal protection systems portfolio of ASTRIUM GmbH - recent developments, in 6th European Workshop on Thermal Protection Systems and Hot Structures (European Space Agency, 2009).

  9. D.E. Myers, C.J. Martin, and M.L. Blosser: Parametric weight comparison of current and proposed thermal protection system (TPS) concepts, in 33rd Thermophysics Conference (AIAA, 1999), p. 1999.

  10. T. Pichon, R. Barreteau, P. Soyris, A. Foucault, J.M. Parenteau, Y. Prel, and S. Guedron: CMC thermal protection system for future reusable launch vehicles: Generic shingle technological maturation and tests. Acta Astronaut. 65(1–2), 165 (2009).

    Article  CAS  Google Scholar 

  11. G.J. Dadd, R.E. Owen, J. Hodges, and K.N. Atkinson: Sustained hypersonic flight experiment (SHyFE), in 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference (AIAA, 2006), p. 2006.

  12. A.R. Studart, U.T. Gonzenbach, E. Tervoort, and L.J. Gauckler: Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 89(6), 1771 (2006).

    Article  CAS  Google Scholar 

  13. R. Brezny and D.J. Green: Uniaxial strength behavior of brittle cellular materials. J. Am. Ceram. Soc. 76(9), 2185 (1993).

    Article  CAS  Google Scholar 

  14. R. Brezny, D.J. Green, and C.Q. Dam: Evaluation of strut strength in open-cell ceramics. J. Am. Ceram. Soc. 72(6), 885 (1989).

    Article  CAS  Google Scholar 

  15. A. Ortona, S. Pusterla, and S. Gianella: An integrated assembly method of sandwich structured ceramic matrix composites. J. Eur. Ceram. Soc. 1821 (2011).

    Google Scholar 

  16. A. Ortona, C. D’Angelo, and G. Bianchi: Monitoring sandwich structured SiC ceramics integrity with electrical resistance. NDT and E Int. 77 (2011).

  17. M. Ashby: Hybrid materials to expand the boundaries of material-property space. J. Am. Ceram. Soc. 94, S3 (2011).

    Article  CAS  Google Scholar 

  18. A. Ortona, C. D'Angelo, S. Gianella, and D. Gaia: Cellular ceramics produced by rapid prototyping and replication. Mater. Lett. 80, 95 (2012).

    Article  CAS  Google Scholar 

  19. A. Ortona, S. Pusterla, P. Fino, F. Mach, A. Delgado, and S. Biamino: Aging of reticulated Si-SiC foams in porous burners. Adv. Appl. Ceram. 109(4), 246 (2010).

    Article  CAS  Google Scholar 

  20. F.I. Hurwitz: Improved fabrication of ceramic matrix composite/foam core integrated structures, in NASA Tech Briefs (NASA, 2009), p. 15.

    Google Scholar 

  21. K. Schwartzwalder, H. Somers and A.V. Somers: Method of making porous ceramic articles. U.S. Patent No. 3090094, 1963.

  22. G. Adler, M. Graeber, M. Standke, H. Jaunich, H. Stoever, and R. Stoetzel: Open-Cell Expanded Ceramic with A High Level of Strength, and Process for the Production Thereof (FRAUNHOFER GES FORSCHUNG, 1996). Edited by European patent office, Munich.

    Google Scholar 

  23. N. Mills: Polymer Foams Handbook Engineering and Biomechanics Applications and Design Guide (Butterworth-Heinemann, Oxford, UK, 2007).

    Google Scholar 

  24. R.M. Sullivan, L.J. Ghosn, and B.A. Lerch: A general tetrakaidecahedron model for open-celled foams. Int. J. Solids Struct. 45(6), 1754 (2008).

    Article  Google Scholar 

  25. L.J. Gibson and M.F. Ashby: Cellular Solids Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, UK, 1997).

    Book  Google Scholar 

  26. C. D’Angelo, A. Ortona and P. Colombo: Finite element analysis of reticulated ceramics under compression. Acta Mater. 60(19), 6692 (2012).

    Article  Google Scholar 

  27. S. Pusterla, A. Ortona, C. D’Angelo, and M. Barbato: The influence of cell morphology on the effective thermal conductivity of reticulated ceramic foams. J. Porous Mater. 19(3), 307 (2011).

    Article  Google Scholar 

  28. C.A. Nannetti, A. Ortona, D.A. Pinto, and B. Riccardi: Manufacturing SiC‐fiber‐reinforced SiC matrix composites by improved CVI/slurry infiltration/polymer impregnation and pyrolysis. J. Am. Ceram. Soc. 87(7), 1205 (2004).

    Article  CAS  Google Scholar 

  29. H. Scheer, P. Tran, and P. Berthe: ARV reentry module aerodynamics and aerothermodynamics, in (ESA Special Publication, 2011), p. 121.

    Google Scholar 

  30. P.D. Desai: Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data 15(3), 967 (1986).

    Article  CAS  Google Scholar 

  31. K. Wei, W. Ma, B. Yang, D. Liu, Y. Dai, and K. Morita: Study on volatilization rate of silicon in multicrystalline silicon preparation from metallurgical grade silicon. Vacuum 85(7), 749 (2011).

    Article  CAS  Google Scholar 

  32. Z. Xiao and B.S. Mitchell: Mullite decomposition kinetics and melt stabilization in the temperature range 1900—2000°C. J. Am. Ceram. Soc. 83(4), 761 (2000).

    Article  CAS  Google Scholar 

  33. N.S. Jacobson and D.L. Myers: Active oxidation of SiC. Oxid Met. 75(1–2), 1 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The research leading to these results has received funding from the European Union Seventh Framework Program (FP7/2007–2013) under grant agreement no 262749 (Project SMARTEES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ortona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortona, A., Badini, C., Liedtke, V. et al. Hetoroporous heterogeneous ceramics for reusable thermal protection systems. Journal of Materials Research 28, 2273–2280 (2013). https://doi.org/10.1557/jmr.2013.70

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.70

Navigation