Skip to main content
Log in

Electron transport properties of graphene with charged impurities and vacancy defects

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nano-structured graphene has recently attracted extraordinary attention due to its potential use as an electronic or spintronic material. We investigated the electrical conductivities of antidot and Ar-sputtered graphene samples under a magnetic field in terms of the carrier density. Antidot samples exhibit conductivity that is well explained by charged impurity scattering, which is associated with intravalley scattering. This suggestion is supported by the low intensity of the Raman D band, which is related to intervalley scattering induced by structural defects. In contrast, Ar-sputtered samples show a strong D band and conductivity that is affected by defect scattering. The difference in the main scattering mechanism between the two types of samples appears as Shubnikov-de Haas oscillations at high magnetic fields, which are observed in antidot samples but not in Ar-sputtered samples. Furthermore, an analysis of weak localization effects in both samples at low fields reveals that intra- and intervalley scatterings play significant roles in antidot and Ar-sputtered samples, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.C. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005).

    Article  CAS  Google Scholar 

  3. Y. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005).

    Article  CAS  Google Scholar 

  4. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351 (2008).

    Article  CAS  Google Scholar 

  5. T. Ando: Screening effect and impurity scattering in monolayer graphene. J. Phys. Soc. Jpn. 75, 074716 (2006).

    Article  Google Scholar 

  6. J.H. Chen, C. Jiang, S. Adam, M.S. Fuhrer, E.D. Williams, and M. Ishigami: Charged-impurity scattering in graphene. Nat. Phys. 4, 377 (2008).

    Article  CAS  Google Scholar 

  7. T. Stauber, N.M.R. Peres, and F. Guinea: Electronic transport in graphene: A semiclassical approach including midgap states. Phys. Rev. B 76, 205423 (2007).

    Article  Google Scholar 

  8. J.H. Chen, W.G. Cullen, C. Jang, M.S. Fuhrer, and E.D. Williams: Defect scattering in graphene. Phys. Rev. Lett. 102, 236805 (2009).

    Article  Google Scholar 

  9. O.V. Yazyev and L. Helm: Defect-induced magnetism in graphene. Phys. Rev. B. 75, 125408 (2007).

    Article  Google Scholar 

  10. K. Takai, H. Sato, T. Enoki, N. Yoshida, F. Okino, H. Touhara, and M. Endo: Effect of fluorination on nano-sized π-electron systems. J. Phys. Soc. Jpn. 70, 175 (2001).

    Article  CAS  Google Scholar 

  11. J.H. Chen, L. Li, W.G. Cullen, E.D. Williams, and M.S. Fuhrer: Tunable Kondo effect in graphene with defects. Nat. Phys. 7, 535 (2011).

    Article  CAS  Google Scholar 

  12. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe: Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65, 1920 (1996).

    Article  CAS  Google Scholar 

  13. Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, and Y. Kaburagi: Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 71, 193406 (2005).

    Article  Google Scholar 

  14. Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and H. Fukuyama: Scanning tunneling microscopy and spectroscopy studies of graphite edges. Appl. Surf. Sci. 241, 43 (2005).

    Article  CAS  Google Scholar 

  15. T. Shen, Y.Q. Wu, M.A. Capano, L.P. Rokhinson, L.W. Engel, and P.D. Ye: Magnetoconductance oscillations in graphene antidot arrays. Appl. Phys. Lett. 93, 122102 (2008).

    Article  Google Scholar 

  16. J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan: Graphene nanomesh. Nat. Nanotechnol. 5, 190 (2010).

    Article  CAS  Google Scholar 

  17. X. Liang, Y.S. Jung, S. Wu, A. Ismach, D.L. Olynick, S. Cabrini, and J. Bokor: Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett. 10, 2454 (2010).

    Article  CAS  Google Scholar 

  18. M. Kim, N.S. Safron, E. Han, M.S. Arnold, and P. Gopalan: Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano Lett. 10, 1125 (2010).

    Article  CAS  Google Scholar 

  19. J. Eroms and D. Weiss: Weak localization and transport gap in graphene antidot lattices. New J. Phys. 11, 095021 (2009).

    Article  Google Scholar 

  20. J. Moser, A. Barreiro, and A. Bachtold: Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 163513 (2007).

    Article  Google Scholar 

  21. L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, and M.A. Pimenta: General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006).

    Article  Google Scholar 

  22. P. Blake, E.W. Hill, A.H.C. Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth, and A.K. Geim: Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  Google Scholar 

  23. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  24. R. Saito, A. Jorio, A.G.S. Filho, G. Dresselhaus, M.S. Dresselhaus, and M.A. Pimenta: Probing phonon dispersion relations of graphite by double resonance Raman scattering. Phys. Rev. Lett. 88, 027401 (2002).

    Article  CAS  Google Scholar 

  25. A.V. Baranov, A.N. Bekhterev, Y.S. Bobovich, and V.I. Petrov: Interpretation of certain characteristics in Raman spectra of graphite and glassy carbon. Opt. Spectrosc. 62, 612 (1987).

    Google Scholar 

  26. C. Thomsen and S. Reich: Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214 (2000).

    Article  CAS  Google Scholar 

  27. K. Sugihara: Thermoelectric power of graphite intercalation compounds. Phys. Rev. B 28, 2157 (1983).

    Article  CAS  Google Scholar 

  28. L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, and A. Jorio: Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 93, 247401 (2004).

    Article  Google Scholar 

  29. S. Heydrich, M. Hirmer, C. Preis, T. Korn, J. Eroms, D. Weiss, and C. Schüller: Scanning Raman spectroscopy of graphene antidot lattices: Evidence for systematic p-type doping. Appl. Phys. Lett. 97, 043113 (2010).

    Article  Google Scholar 

  30. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, and A.K. Geim: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).

    Article  CAS  Google Scholar 

  31. S. Xiao, J.H. Chen, S. Adam, E.D. Williams, and M.S. Fuhrer: Charged impurity scattering in bilayer graphene. Phys. Rev. B 82, 041406 (2010).

    Article  Google Scholar 

  32. R. Nouchi, M. Shiraishi, and Y. Suzuki: Transfer characteristics in graphene field-effect transistors with Co contacts. Appl. Phys. Lett. 93, 152104 (2008).

    Article  Google Scholar 

  33. J.R. Hahn, H. Kang, S. Song, and I.C. Jeon: Observation of charge enhancement induced by graphite atomic vacancy: A comparative STM and AFM study. Phys. Rev. B 53, 1725 (1996).

    Article  Google Scholar 

  34. K. Takai, Y. Nishimura, and T. Enoki: Anomalous magnetotransport in nanostructured graphene. Physica E 42, 680 (2010).

    Article  CAS  Google Scholar 

  35. X. Zhang, Q.Z. Xue, and D.D. Zhu: Positive and negative linear magnetoresistance of graphite. Phys. Lett. A 320, 471 (2004).

    Article  CAS  Google Scholar 

  36. E. McCann, K. Kechedzhi, V.I. Fal’ko, H. Suzuura, T. Ando, and B.L. Altshuler: Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 97, 146805 (2006).

    Article  CAS  Google Scholar 

  37. D.K. Ki, D. Jeong, J.H. Choi, H.J. Lee, and K.S. Park: Inelastic scattering in a monolayer graphene sheet: A weak-localization study. Phys. Rev. B 78, 125409 (2008).

    Article  Google Scholar 

  38. F.V. Tikhonenko, D.W. Horsell, R.V. Gorbachev, and A.K. Savchenko: Weak localization in graphene flakes. Phys. Rev. Lett. 100, 056802 (2008).

    Article  CAS  Google Scholar 

  39. J. Moser, H. Tao, S. Roche, F. Alzina, C.M.S. Torres, and A. Bachtold: Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization. Phys. Rev. B 81, 205445 (2010).

    Article  Google Scholar 

  40. B.R. Matis, F.A. Bulat, A.L. Friedman, B.H. Houston, and J.W. Baldwin: Giant negative magnetoresistance and a transition from strong to weak localization in hydrogenated graphene. Phys. Rev. B 85, 195437 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-aid for Scientific Research no. 20001006 from the Ministry of Education, Culture, Sports, Science and Technology, Japan. This work was partly supported by MEXT Nanotechnology platform 12025014 (F-12-IT-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Kudo.

APPENDIX A

APPENDIX A

We used bilayer and monolayer graphenes for the antidot and Ar-sputtered samples. Monolayer graphene can be prepared easily for Ar-sputtered samples because the preparation process is simple. In contrast, we have seldom succeeded in the preparation and cleaning of monolayer antidot graphene because monolayer graphene is mechanically weak and chemically reactive. However, the electron-beam lithography technique allows the fabrication of antidots not only on the uppermost layer but also on the second layer as well, so that the characteristics of the antidots are almost the same for the first and second layers. Accordingly, we can treat these two layers as identical. Furthermore, as the physical processes that underlie the scattering are not significantly modified by the interlayer interaction, their essence is preserved. On the other hand, in the Ar-sputtered sample, bilayer graphene is inappropriate as defects created on the second layer are different from those on the uppermost layer because of differences in the penetration of the Ar ion. Thus, we chose bilayer antidot graphene and monolayer Ar-sputtered graphene to investigate the dominant scattering mechanism in each sample. In fact, the number of layers is not crucial to our analysis; our discussion focuses on the comparison of inter- and intravalley scattering sources.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudo, Y., Takai, K. & Enoki, T. Electron transport properties of graphene with charged impurities and vacancy defects. Journal of Materials Research 28, 1097–1104 (2013). https://doi.org/10.1557/jmr.2013.62

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.62

Navigation