Skip to main content
Log in

Design and installation of a CO2-pulsed laser plasma deposition system for the growth of mass product nanostructures

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A CO2-pulsed laser plasma deposition (CO2-PLD) system is installed and used for the quick synthesis of various hexagonal boron nitride (h-BN) and zinc oxide (ZnO) nanostructures. Each part of the CO2-PLD system, such as focusing of laser beam on the target surface, sample holder, shutter, heater, type of the gas, and gas flow rate, can be easily controlled independently to fit different experimental conditions. After installation of the system, a series of experiments were conducted using hBN and ZnO targets. Scanning electron microscopy images showed that the entire surface (2 × 2 cm2) of the substrate is covered with the conical- and disk-shaped BN nanostructures and web-like highly dense ZnO nanowires, indicating a significantly short-time approach to grow mass product nanostructures. Raman spectroscopy identified the hexagonal structure of the synthesized samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. Y.J. Cho, C.H. Kim, H.S. Kim, J. Park, H.C. Choi, H.J. Shin, G. Gao, and H.S. Kang: Electronic structure of Si-doped BN nanotubes using x-ray photoelectron spectroscopy and first-principles calculation. Chem. Mater. 21, 136 (2009).

    Article  CAS  Google Scholar 

  2. S. Bernard, V. Salles, S. Foucaud, and P. Miele: Boron nitride nanoparticles: One-step synthesis from single-source preceramic precursors. Adv. Sci. Technol. 62, 1 (2010).

    Article  CAS  Google Scholar 

  3. C. Zhi, Y. Bando, C. Tang, H. Kuwahara, and D. Golberg: Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21, 2889 (2009).

    Article  CAS  Google Scholar 

  4. Y. Lin, T.V. Williams, and J.W. Connell: Soluble, exfoliated hexagonal boron nitride nanosheets. J. Phys. Chem. Lett. 1, 277 (2010).

    Article  Google Scholar 

  5. Y. Lin, T.V. Williams, W. Cao, H.E.E. Ali, and J.W. Connell: Defect functionalization of hexagonal boron nitride nanosheets. J. Phys. Chem. C 114, 17434 (2010).

    Article  CAS  Google Scholar 

  6. J.C. Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, and U. Kaiser: Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 9, 2683 (2009).

    Article  CAS  Google Scholar 

  7. M. Cote, P.D. Haynes, and C. Molteni: Material design from first principles: The case of boron nitride polymers. J. Phys. Condens. Matter 14 (42), 9997 (2002).

    Article  CAS  Google Scholar 

  8. K. Kyoungwon, S. Yong-Won, C. Seongpil, K. In-Ho, K. Sangsig, and Y.L. Sang: Fabrication and characterization of Ga-doped ZnO nanowire gas sensor for the detection of CO. Thin Solid Films 518, 1190 (2009).

    Article  Google Scholar 

  9. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, and P.M. Ajayan: Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10 (8), 3209 (2010).

    Article  CAS  Google Scholar 

  10. P.J. Li, Z.M. Liao, X.Z. Zhang, X.J. Zhang, H.C. Zhu, J.Y. Gao, K. Laurent, Y. Leprince-Wang, N. Wang, and D.P. Yu: Electrical and photoresponse properties of an intramolecular p-n homojunction in single phosphorus-doped ZnO nanowires. Nano Lett. 9, 2513 (2009).

    Article  CAS  Google Scholar 

  11. Y.H. Wu, P.W. Qiao, T.C. Chong, and Z.X. Shen: Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv. Mater. 14, 64–67 (2002).

    Article  CAS  Google Scholar 

  12. M.Y. Zhu, J.J. Wang, B.C. Holloway, R.A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D M. Manos: A mechanism of carbon nanosheet formation. Carbon 45, 2229–2234 (2007).

    Article  CAS  Google Scholar 

  13. P.X. Feng and H.X. Zhang: Properties of nanostructured cubic boron nitride films prepared by the short-pulse laser plasma deposition techniques. Int. J. Refract. Met. Hard Mater 27, 823 (2009).

    Article  CAS  Google Scholar 

  14. Y. Noorhana, H.G. Beh, and H. Mansor: Development of pulsed laser deposition system for the formation of web-like carbon nanotubes. Am. J. Appl. Sci. 2 (11), 1546 (2005).

    Google Scholar 

  15. M.N. Ljubica, R. Ljijana, and V.S. Vladimir: Effect of substrate type on nanostructured titania sol-gel coatings for sensors applications. Ceram. Int. 31, 261 (2005).

    Article  Google Scholar 

  16. A. Pakdel, C. Zhi, Y. Bando, T. Nakayama, and D. Golberg: Boron nitride nanosheet coatings with controllable water repellency. ACS Nano. 5, 6507–6515 (2011).

    Article  CAS  Google Scholar 

  17. R.J. Nemanich, S.A. Solin, and R.M. Martin: Light scattering study of boron nitride microcrystals. Phys. Rev. B 23, 6348 (1981).

    Article  CAS  Google Scholar 

  18. D.M. Hoffman, G.L. Doll, and P.C. Eklund: Electronic transition in hexagonal boron nitride. Phys. Rev. B 30, 6051 (1984).

    Article  CAS  Google Scholar 

  19. J. Wu, W.Q. Han, W. Walukiewicz, J.W. Ager, W. Shan, E.E. Haller, and A. Zettl: Raman spectroscopy and time-resolved photoluminescence of BN and BxCyNz nanotubes. Nano Lett. 4, 647 (2004).

    Article  CAS  Google Scholar 

  20. M Takahashi, Y. Noguchi, and M. Miyayama: Electrical conduction mechanism in Bi4Ti3O12 single crystal. Jpn. J. Appl. Phys. 41, 7053–7056 (2002).

    Article  CAS  Google Scholar 

  21. L. Escobr-Alarcon, E. Camps, B. Rebollo, E. Haro-Poniatowski, M.A. Camacho-lopez, and S. Muhl: Thin film deposition of nitrided amorphous carbon by laser ablation. Superficies y Vacio 11, 36 (2000).

    Google Scholar 

  22. M. Sajjad, H.X. Zhang, X.Y. Peng, and P.X. Feng: Effect of substrate temperature in the synthesis of BN nanostructures. Phys. Scr. 83, 065601–065604 (2011).

    Article  Google Scholar 

  23. M. Sajjad and X.P. Feng: Low temperature synthesis of cBN films. Appl. Phys. Lett. 99, 253109-1-253109-4 (2011).

  24. B.Q. Yang, P.X. Feng, A. Kumar, R.S. Katiyar, and M. Achermann: Structural and optical properties of N-doped ZnO nanorod arrays. J. Phys. D: Appl. Phys. 42, 195402 (2009).

    Article  Google Scholar 

  25. B.Q. Yang, A. Kumar, P.X. Feng, and R.S. Katiyar: Structural degradation and optical property of nanocrystalline ZnO films grown on Si (100). Appl. Phys. Lett. 92, 233112 (2008).

    Article  Google Scholar 

  26. S. Koki, H. Yasushi, N. Kouhei, I. Koichi, T. Kiyoshi, K. Makoto, and Z. Bao-Ping: MOCVD growth of monomethylhydrazine-doped ZnO layers. J. Cryst. Growth 272, 805 (2004).

    Article  Google Scholar 

  27. F. Pan, C. Song, X.J. Liu, Y.C. Yang, and F. Zeng: Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng., R 62, 1 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by NSF-DMR (0706147). We would like to thank Dr. Carlos Cabrera and his staff for SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajjad, M., Peng, X., Chu, J. et al. Design and installation of a CO2-pulsed laser plasma deposition system for the growth of mass product nanostructures. Journal of Materials Research 28, 1747–1752 (2013). https://doi.org/10.1557/jmr.2013.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.58

Navigation