Skip to main content
Log in

Low-temperature processing and control of structure and properties of TiO2/c-sapphire epitaxial heterostructures

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have investigated the formation of the rutile and the anatase polymorphs of TiO2, with emphasis on epitaxial growth characteristics, and defect content as a function of laser and substrate variables. X-ray diffraction (XRD) studies revealed that the rutile phase is more stable at higher substrate temperatures and lower oxygen pressures; in contrast, decreasing the temperature and increasing the oxygen pressure gave rise to formation of anatase. Epitaxial rutile films with a <100> orientation were obtained at 450 °C using the pressure of 5 × 10-4 Torr, and laser energy of 3.5-4.0 J/cm2. The epitaxial relationship, determined by 2θ-θ and Φ scan of XRD and confirmed by transmission electron microscopy (TEM) diffraction patterns, was shown to be rutile(100)‖sapphire(0001), rutile[001]‖sapphire[1010] and rutile[010]‖sapphire[1210]. An atomically sharp interface between the rutile epitaxial film and the sapphire substrate was observed in the scanning transmission electron microscopy (STEM) images. The films exhibited a transmittance of 75-90% over the visible region. The absorption edge was observed to shift toward longer wave lengths at higher deposition temperatures or lower pressures. X-ray photoelectron spectroscopy and photoluminescence results showed that concentration of lattice point defects, namely oxygen vacancies and titanium interstitials, increased at lower oxygen pressures. Formation of nanostructured films with a surface roughness of -1.5-13.1 nm was confirmed by atomic force microscopy investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
TABLE 1.
FIG. 11.
FIG. 12.
FIG. 13.
FIG. 14.

Similar content being viewed by others

References

  1. M.R. Bayati, A.Z. Moshfegh, and F. Golestani-Fard: On the photocatalytic activity of the sulfur doped titania nano-porous films derived via micro-arc oxidation. Appl. Catal., A 389, 60 (2010).

    Article  CAS  Google Scholar 

  2. M.R. Bayati, F. Golestani-Fard, and A.Z. Moshfegh: In situ growth of vanadia-titania nano/micro-porous layers with enhanced photocatalytic performance by micro-arc oxidation. Electrochim. Acta 55, 3093 (2010).

    Article  CAS  Google Scholar 

  3. M.R. Bayati, F. Golestani-Fard, and A.Z. Moshfegh: Visible photodecomposition of methylene blue over micro arc oxidized WO3-loaded TiO2 nano-porous layers. Appl. Catal., A 382, 322 (2010).

    Article  CAS  Google Scholar 

  4. M.R. Bayati, F. Golestani-Fard, A.Z. Moshfegh, and R. Molaei: In situ derivation of sulfur activated TiO2 nano porous layers through pulse-micro arc oxidation technology. Mater. Res. Bull. 46, 531 (2011).

    Article  CAS  Google Scholar 

  5. H. Park, W.R. Kim, H.T. Jeong, J.J. Lee, H.G. Kim, and W.Y. Choi: Fabrication of dye-sensitized solar cells by transplanting highly ordered TiO2 nanotube arrays. Sol. Energy Mater. Sol. Cells 95, 184 (2011).

    Article  CAS  Google Scholar 

  6. J. Yu, Q. Li, and Z. Shu: Dye-sensitized solar cells based on double-layered TiO2 composite films and enhanced photovoltaic performance. Electrochim. Acta 56, 6293 (2011).

    Article  CAS  Google Scholar 

  7. G.J. Yang, C.J. Li, S.Q. Fan, and J.C. Gao: Influence of pore structure on ion diffusion property in porous TiO2 coating and photovoltaic performance of dye-sensitized solar cells. Surf. Coat. Technol. 205, 3205 (2011).

    Article  CAS  Google Scholar 

  8. C. Karunakaran, G. Abiramasundari, P. Gomathisankar, G. Manikandan, and V. Anandi: Preparation and characterization of ZnO-TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light. Mater. Res. Bull. 46, 1586 (2011).

    Article  CAS  Google Scholar 

  9. B.S. Necula, I. Apachitei, F.D. Tichelaar, L.E. Fratila-Apachitei, and J. Duszczyk: An electron microscopical study on the growth of TiO2-Ag antibacterial coatings on Ti6Al7Nb biomedical alloy. Acta Biomater. 7, 2751 (2011).

    Article  CAS  Google Scholar 

  10. M.R. Bayati and R. Molaei: Visible photoinduced hydrophilicity of V2O5-TiO2 nanoporous ceramic layers grown via micro-arc oxidation. J. Phys. D: Appl. Phys. 43, 505304 (2010).

    Article  CAS  Google Scholar 

  11. K.X. Zhang, W. Wang, J.L. Hou, J.H. Zhao, Y. Zhang, and Y.C. Fang: Oxygen plasma induced hydrophilicity of TiO2 thin films. Vacuum 85, 990 (2011).

    Article  CAS  Google Scholar 

  12. M.R. Bayati, R. Molaei, A. Kajbafvala, S. Zanganeh, H.R. Zargar, and K. Janghorban: Investigation on hydrophilicity of micro-arc oxidized TiO2 nano/micro-porous layers. Electrochim. Acta 55, 5786 (2010).

    Article  CAS  Google Scholar 

  13. J. Moon, J. Park, S.J. Lee, T. Zyung, and I.D. Kim: Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens. Actuators, B 149, 301 (2010).

    Article  CAS  Google Scholar 

  14. S. Lin, D. Li, J. Wu, X. Li, and S.A. Akbar: A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays. Sens. Actuators, B 156, 505 (2011).

    Article  CAS  Google Scholar 

  15. C. Han, D. Hong, S. Han, J. Gwak, and K. Singh: Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED. Sens. Actuators, B 125, 224 (2007).

    Article  CAS  Google Scholar 

  16. A.A. Ashkarran, S.M. Aghigh, M. Kavianipour, and N.J. Farahani: Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents. Curr. Appl. Phys. 11, 1048 (2011).

    Article  Google Scholar 

  17. R. Khan and M. Dhayal: Nanocrystalline bioactive TiO2-chitosan impedimetric immunosensor for ochratoxin-A. Electrochem. Commun. 10, 492 (2008).

    Article  CAS  Google Scholar 

  18. K. Fröhlich, B. Hudec, J. Aarik, A. Tarre, D. Machajdík, A. Kasikov, K. Hušeková, and Š. Gaži: Post-deposition processing and oxygen content of TiO2-based capacitors. Microelectron. Eng. 88, 1525 (2011).

    Article  CAS  Google Scholar 

  19. B. Hudec, K. Hušeková, A. Tarre, J.H. Han, S. Han, A. Rosová, W. Lee, A. Kasikov, S.J. Song, J. Aarik, C.S. Hwang, and K. Fröhlich: Electrical properties of TiO2-based MIM capacitors deposited by TiCl4 and TTIP based atomic layer deposition processes. Microelectron. Eng. 88, 1514 (2011).

    Article  CAS  Google Scholar 

  20. M. Popovici, M.S. Kim, K. Tomida, J. Swerts, H. Tielens, A. Moussa, O. Richard, H. Bender, A. Franquet, T. Conard, L. Altimime, S.V. Elshocht, and J.A. Kittl: Improved EOT and leakage current for metal-insulator-metal capacitor stacks with rutile TiO2. Microelectron. Eng. 88, 1517 (2011).

    Article  CAS  Google Scholar 

  21. B.B. Topuz, G. Gündüz, B. Mavis, and Ü. Çolak: The effect of tin dioxide (SnO2) on the anatase-rutile phase transformation of titania (TiO2) in mica-titania pigments and their use in paint. Dyes Pigm. 90, 123 (2011).

    Article  CAS  Google Scholar 

  22. M.R. Mahmoudian, W.J. Basirun, Y. Alias, and M. Ebadi: Synthesis and characterization of polypyrrole/Sn-doped TiO2 nanocomposites (NCs) as a protective pigment. Appl. Surf. Sci. 257, 8317 (2011).

    Article  CAS  Google Scholar 

  23. M.R. Bayati, A.Z. Moshfegh, and F. Golestani-Fard: Micro-arc oxidized S-TiO2 nanoporous layers: Cationic or anionic doping?Mater. Lett. 64, 2215 (2010).

    Article  CAS  Google Scholar 

  24. A. Fujishima, X. Zhang, and D.A. Tryk: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515 (2008).

    Article  CAS  Google Scholar 

  25. N. Sbai, J. Perriere, W. Seiler, and E. Millon: Epitaxial growth of titanium oxide thin films on c-cut and a-cut sapphire substrates. Surf. Sci. 601, 5649 (2007).

    Article  CAS  Google Scholar 

  26. J.F. Banfield, D.R. Veblen, and D.J. Smith: Conversion of perovskite to anatase and TiO2 (B): A TEM study and the use of fundamental building blocks for understanding relationships among the TiO, minerals. Am. Mineral. 76, 343 (1991).

    CAS  Google Scholar 

  27. C.T. Dervos, E. Thirios, J. Novacovich, P. Vassiliou, and P. Skafidas: Permittivity properties of thermally treated TiO2. Mater. Lett. 58, 1502 (2004).

    Article  CAS  Google Scholar 

  28. G. Madras, B.J. McCoy, and A. Navrotsky: Kinetic model for TiO2 polymorphic transformation from anatase to rutile. J. Am. Ceram. Soc. 90, 250 (2007).

    Article  CAS  Google Scholar 

  29. R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, and F. Levy: Electronic structure of anatase TiO2 oxide. J. Appl. Phys. 75, 2945 (1994).

    Article  CAS  Google Scholar 

  30. J.C. Auger, B. Stout, R.G. Barrera, and F. Curiel: Scattering properties of rutile pigments located eccentrically within microvoids. J. Quant. Spectrosc. Radiat. Transfer 70, 675 (2001).

    Article  CAS  Google Scholar 

  31. M. Cernea, M. Secu, C.E. Secu, M. Baibarac, and B.S. Vasile: Structural and thermoluminescence properties of undoped and Fe-doped-TiO2 nanopowders processed by sol-gel method. J. Nanopart. Res. 13, 77 (2011).

    Article  CAS  Google Scholar 

  32. M. Andersson, A. Kiselev, L. Osterlund, and A.E.C. Palmqvist: Microemulsion-mediated room-temperature synthesis of high-surface-area rutile and its photocatalytic performance. J. Phys. Chem. C 111, 6789 (2007).

    Article  CAS  Google Scholar 

  33. S.K. Kim, S.W. Lee, J.H. Han, B. Lee, S. Han, and C.S. Hwang: Capacitors with an equivalent oxide thickness of <0.5 nm for nanoscale electronic semiconductor memory. Adv. Funct. Mater. 20, 2989 (2010).

    Article  CAS  Google Scholar 

  34. U. Diebold: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).

    Article  CAS  Google Scholar 

  35. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  36. D. Yoo, I. Kim, S. Kim, C. Hahn, C. Lee, and S. Cho: Effects of annealing temperature and method on structural and optical properties of TiO2 films prepared by RF magnetron sputtering at room temperature. Appl. Surf. Sci. 253, 3888 (2007).

    Article  CAS  Google Scholar 

  37. Y.Q. Hou, D.M. Zhuang, G. Zhang, M. Zhao, and M.S. Wu: Influence of annealing temperature on the properties of titanium oxide thin film. Appl. Surf. Sci. 218, 97 (2003).

    Article  CAS  Google Scholar 

  38. S. Chen, M.G. Mason, H.J. Gysling, G.R. Paz-Pujalt, T.N. Blanton, T. Castro. K.M. Chen, C.P. Fictorie, W.L. Gladfelter, A. Franciosi, P.I. Cohen, and J.F. Evans: Ultrahigh vacuum metalorganic chemical vapor deposition growth and in situ characterization of epitaxial TiO2 films. J. Vac. Sci. Technol., A 11, 2419 (1993).

    Article  CAS  Google Scholar 

  39. Y. Gao, S. Thevuthasan, D.E. McCready, and M. Engelhard: MOCVD growth and structure of Nb- and V-doped TiO2 films on sapphire. J. Cryst. Growth 212, 178 (2000).

    Article  CAS  Google Scholar 

  40. R.K. Singh and J. Narayan: Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B 41, 8843 (1990).

    Article  CAS  Google Scholar 

  41. D.G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh: Preparation of anatase and rutile thin films by controlling oxygen partial pressure. Appl. Surf. Sci. 193, 287 (2002).

    Article  CAS  Google Scholar 

  42. H. Long, G. Yang, A. Chen, Y. Li, and P. Lu: Growth and characteristics of laser deposited anatase and rutile TiO2 films on Si substrates. Thin Solid Films 517, 745 (2008).

    Article  CAS  Google Scholar 

  43. S.D. Mo and W.Y. Ching: Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Phys. Rev. B 51, 13023 (1995).

    Article  CAS  Google Scholar 

  44. S. Na-Phattalung, M.F. Smith, K. Kim, M.H. Du, and S.H. Wei: First-principles study of native defects in anatase TiO2. Phys. Rev. B 73, 125205 (2006).

    Article  CAS  Google Scholar 

  45. S.W. Chan: Degenerate epitaxy, coincidence epitaxy and origin of “special” boundaries in thin films. J. Phys. Chem. Solids 55, 1137 (1994).

    Article  CAS  Google Scholar 

  46. H. Zhou, M.F. Chisholm, T.H. Yang, S.J. Pennycook, and J. Narayan: Role of interfacial transition layers in VO2/Al2O3 heterostructures. J. Appl. Phys. 110, 073515 (2011).

    Article  CAS  Google Scholar 

  47. M.R. Bayati, R. Molaei, R.J. Narayan, J. Narayan, H. Zhou, and S.J. Pennycook: Domain epitaxy in TiO2/a-Al2O3 thin film heterostructures with Ti2O3 transient layer. Appl. Phys. Lett. 100, 251606 (2012).

    Article  CAS  Google Scholar 

  48. M.A. Afifi, M.M. Abdel-Aziz, I.S. Yahia, M. Fadel, and L.A. Wahab: Transport properties of polycrystalline TiO2 and Ti2O3 as semiconducting oxides. J. Alloys Compd. 455, 92 (2008).

    Article  CAS  Google Scholar 

  49. J. Narayan and B.C. Larson: Domain epitaxy: A unified paradigm for thin film growth. J. Appl. Phys. 93, 278 (2003).

    Article  CAS  Google Scholar 

  50. S. Mal, S. Nori, C.M. Jin, J. Narayan, S. Nellutla, A.I. Smirnov, and J.T. Prater: Reversible room temperature ferromagnetism in undoped zinc oxide: Correlation between defects and physical properties. J. Appl. Phys. 108, 073510 (2010).

    Article  CAS  Google Scholar 

  51. E. Finazzi, C.D. Valentin, and G. Pacchioni: Nature of Ti Interstitials in reduced bulk anatase and rutile TiO2. J. Phys. Chem. C 113, 3382 (2009).

    Article  CAS  Google Scholar 

  52. F.A. Kroger: The Chemistry of Imperfect Crystals (North Holland, Amsterdam, The Netherlands, 1974).

    Google Scholar 

  53. M.K. Nowotny, T. Bak, and J. Nowotny: Electrical properties and defect chemistry of TiO2 single crystal. I. Electrical conductivity. J. Phys. Chem. B 110, 16270 (2006).

    Article  CAS  Google Scholar 

  54. M.K. Nowotny, L.R. Sheppard, T. Bak, and J. Nowotny: Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J. Phys. Chem. C 112, 5275 (2008).

    Article  CAS  Google Scholar 

  55. T. Bak, J. Nowotny, M. Rekas, and C.C. Sorrell: Defect chemistry and semiconducting properties of titanium dioxide: II. Defect diagrams. J. Phys. Chem. Solids 64, 1057 (2003).

    Article  CAS  Google Scholar 

  56. K.V. Baiju, A. Zachariah, S. Shukla, S. Biju, M.L.P. Reddy, and K.G.K. Warrier: Correlating photoluminescence and photocatalytic activity of mixed-phase nanocrystalline titania. Catal. Lett. 130, 130 (2009).

    Article  CAS  Google Scholar 

  57. Y. Cong, J. Zhang, F. Chen, and M. Anpo: Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 111, 6976 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the U.S. National Science Foundation (Grant No. 0803663) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Bayati.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayati, M.R., Joshi, S., Narayan, R.J. et al. Low-temperature processing and control of structure and properties of TiO2/c-sapphire epitaxial heterostructures. Journal of Materials Research 28, 1669–1679 (2013). https://doi.org/10.1557/jmr.2013.42

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.42

Navigation