Skip to main content
Log in

Copper oxide as a “self-cleaning” substrate for graphene growth

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Commonly used techniques for cleaning copper substrates before graphene growth via chemical vapor deposition (CVD), such as rinsing with acetone, nitric, and acetic acid, and high temperature hydrogen annealing still leave residual adventitious carbon on the copper surface. This residual carbon promotes graphene nucleation and leads to higher nucleation density. We find that copper with an oxidized surface can act as a self-cleaning substrate for graphene growth by CVD. Under vacuum conditions, copper oxide thermally decomposes, releasing oxygen from the substrate surface. The released oxygen reacts with the carbon residues on the copper surface and forms volatile carbon monoxide and carbon dioxide, leaving a clean copper surface free of carbon for large-area graphene growth. Using oxidized electropolished copper foil leads to a reduction in graphene nucleation density by over a factor of 1000 when compared to using chemically cleaned oxygen free copper foil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009).

    Article  CAS  Google Scholar 

  2. M. Batzill: The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 67(3–4), 83–115 (2012).

    Article  CAS  Google Scholar 

  3. Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E.L.C. Samuel, C. Kittrell, and J.M. Tour: Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6(10), 9110–9117 (2012).

    Article  CAS  Google Scholar 

  4. Q. Yu, L.A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T.F. Chung, P. Peng, N.P. Guisinger, E.A. Stach, J. Bao, S-S. Pei, and Y.P. Chen: Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10(6), 443–449 (2011).

    Article  CAS  Google Scholar 

  5. W. Wu, L.A. Jauregui, Z. Su, Z. Liu, J. Bao, Y.P. Chen, and Q. Yu: Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. Adv. Mater. 23(42), 4898–4903 (2011).

    Article  CAS  Google Scholar 

  6. Y.A. Wu, Y. Fan, S. Speller, G.L. Creeth, J.T. Sadowski, K. He, A.W. Robertson, C.S. Allen, and J.H. Warner: Large single crystals of graphene on melted copper using chemical vapor deposition. ACS Nano 6(6), 5010–5017 (2012).

    Article  CAS  Google Scholar 

  7. D. Geng, B. Wu, Y. Guo, L. Huang, Y. Xue, J. Chen, G. Yu, L. Jiang, W. Hu, and Y. Liu: Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl. Acad. Sci. U.S.A. 109(21), 7992–7996 (2012).

    Article  CAS  Google Scholar 

  8. H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu, X. Xie, and W-J. Zhang: Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J. Am. Chem. Soc. 134(8), 3627–3630 (2012).

    Article  CAS  Google Scholar 

  9. X. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, and R.S. Ruoff: Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133(9), 2816–2819 (2011).

    Article  CAS  Google Scholar 

  10. Y. Zhang, L. Zhang, P. Kim, M. Ge, Z. Li, and C. Zhou: Vapor trapping growth of single-crystalline graphene flowers: Synthesis, morphology, and electronic properties. Nano Lett. 12(6), 2810–2816 (2012).

    Article  CAS  Google Scholar 

  11. L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L-P. Ma, Z. Zhang, Q. Fu, L-M. Peng, X. Bao, and H-M. Cheng: Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012).

    Article  Google Scholar 

  12. T. Iwasaki, H.J. Park, M. Konuma, D.S. Lee, J.H. Smet, and U. Starke: Long-range ordered single-crystal graphene on high-quality heteroepitaxial Ni thin films grown on MgO(111). Nano Lett. 11(1), 79–84 (2011).

    Article  CAS  Google Scholar 

  13. Z. Luo, Y. Lu, D.W. Singer, M.E. Berck, L.A. Somers, B.R. Goldsmith, and A.T.C. Johnson: Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem. Mater. 23(6), 1441–1447 (2011).

    Article  CAS  Google Scholar 

  14. H. Ago, Y. Ogawa, M. Tsuji, S. Mizuno, and H. Hibino: Catalytic growth of graphene: Toward large-area single-crystalline graphene. J. Phys. Chem. Lett. 3(16), 2228–2236 (2012).

    Article  CAS  Google Scholar 

  15. J.D. Wood, S.W. Schmucker, A.S. Lyons, E. Pop, and J.W. Lyding: Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 11(11), 4547–4554 (2011).

    Article  CAS  Google Scholar 

  16. H. Kim, C. Mattevi, M.R. Calvo, J.C. Oberg, L. Artiglia, S. Agnoli, C.F. Hirjibehedin, M. Chhowalla, and E. Saiz: Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6(4), 3614–3623 (2012).

    Article  CAS  Google Scholar 

  17. S. Choubak, M. Biron, P.L. Levesque, R. Martel, and P. Desjardins: No graphene etching in purified hydrogen. J. Phys. Chem. Lett. 4(7), 1100–1103 (2013).

    Article  CAS  Google Scholar 

  18. A. Santoni and J. Urban: AES and EELS investigation of carbonaceous layers on Cu(110) and Cu(100). Surf. Sci. 186(3), 376–382 (1987).

    Article  CAS  Google Scholar 

  19. E. Loginova, N.C. Bartelt, P.J. Feibelman, and K.F. McCarty: Factors influencing graphene growth on metal surfaces. New J. Phys. 11(6), 063046 (2009).

    Article  Google Scholar 

  20. B. Zhang, W.H. Lee, R. Piner, I. Kholmanov, Y. Wu, H. Li, H. Ji, and R.S. Ruoff: Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano 6(3), 2471–2476 (2012).

    Article  CAS  Google Scholar 

  21. A.C. Ferrari and D.M. Basko: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(4), 235–246 (2013).

    Article  CAS  Google Scholar 

  22. L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus: Raman spectroscopy in graphene. Phys. Rep. 473(5–6), 51–87 (2009).

    Article  CAS  Google Scholar 

  23. X. Li, W. Cai, L. Colombo, and R.S. Ruoff: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9(12), 4268–4272 (2009).

    Article  CAS  Google Scholar 

  24. S. Chen, L. Brown, M. Levendorf, W. Cai, S-Y. Ju, J. Edgeworth, X. Li, C.W. Magnuson, A. Velamakanni, R.D. Piner, J. Kang, J. Park, and R.S. Ruoff: Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5(2), 1321–1327 (2011).

    Article  CAS  Google Scholar 

  25. S. Poulston, P.M. Parlett, P. Stone, and M. Bowker: Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 24(12), 811–820 (1996).

    Article  CAS  Google Scholar 

  26. C.E. Dubé, B. Workie, S.P. Kounaves, A. Robbat, M.L. Aksub, and G. Davies: Electrodeposition of metal alloy and mixed oxide films using a single-precursor tetranuclear copper-nickel complex. J. Electrochem. Soc. 142(10), 3357–3365 (1995).

    Article  Google Scholar 

  27. A. Goswami and Y.N. Trehan: The thermal decomposition of cupric oxide in vacuo. Proc. Phys. Soc. B 70, 1005 (1957).

    Article  Google Scholar 

  28. Z.H. Gan, G.Q. Yu, B.K. Tay, C.M. Tan, Z.W. Zhao, and Y.Q. Fu: Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc. J. Phys. D: Appl. Phys. 37(1), 81 (2004).

    Article  CAS  Google Scholar 

  29. Y.S. Gong, C. Lee, and C.K. Yang: Atomic force microscopy and Raman spectroscopy studies on the oxidation of Cu thin films. J. Appl. Phys. 77(10), 5422–5425 (1995).

    Article  CAS  Google Scholar 

  30. K. Kodera, I. Kusunoki, and S. Shimizu: Dissociation pressures of various metallic oxides. Bull. Chem. Soc. Jpn. 41(5), 1039–1045 (1968).

    Article  CAS  Google Scholar 

  31. B. Hallstedt, D. Risold, and L.J. Gauckler: Thermodynamic assessment of the copper-oxygen system. J. Phase Equilib. 15(5), 483–499 (1994).

    Article  CAS  Google Scholar 

  32. K.L. Chavez and D.W. Hess: A novel method of etching copper oxide using acetic acid. J. Electrochem. Soc. 148(11), G640–G643 (2001).

    Article  CAS  Google Scholar 

  33. Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C.W. Magnuson, E. Tutuc, B.I. Yakobson, K.F. McCarty, Y-W. Zhang, P. Kim, J. Hone, L. Colombo, and R.S. Ruoff: The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342(6159), 720–723 (2013).

    Article  CAS  Google Scholar 

  34. Z.R. Robinson, E.W. Ong, T.R. Mowll, P. Tyagi, D.K. Gaskill, H. Geisler, and C.A. Ventrice; Influence of chemisorbed oxygen on the growth of graphene on Cu(100) by chemical vapor deposition. J. Phys. Chem. C 117(45), 23919–23927 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Carl W. Magnuson gratefully appreciates support from Sandia National Labs LDRD fellowship program. We thank the Keck Foundation (749046) and ONR (N00014-10-1-0254) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney S. Ruoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnuson, C.W., Kong, X., Ji, H. et al. Copper oxide as a “self-cleaning” substrate for graphene growth. Journal of Materials Research 29, 403–409 (2014). https://doi.org/10.1557/jmr.2013.388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.388

Navigation