Skip to main content
Log in

The peculiarities of reduction of iron (III) oxides deposited on expanded graphite

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A reduction of iron (III) oxides deposited on expanded graphite (EG) matrixes of three types in hydrogen flow was studied in dynamic and static regimes. In the dynamic regime, the EG matrix was shown not to influence the temperature range of the iron (III) oxide reduction. However, the C/O atomic ratios, varying depending on the type of EG matrixes, affect the completeness of reduction of these oxides to metallic iron. The reduction kinetics of iron (III) oxides deposited on EG and of bulk oxides were found to be similar and could be described by the combination of expanded Prout–Tompkins autocatalysis and n-dimensional growth of nuclei models. The prolonged hydrogen treatment at 600 °C of the samples in the static regime results in quantitative reduction of iron (III) oxide to α-Fe independent of the type of EG matrix used. The obtained samples demonstrate the relatively high values of saturation magnetization of 35 emu/g together with a high sorption capacity for crude oil of 93 g/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
TABLE II.
TABLE III.
FIG. 3.
FIG. 4.
FIG. 6.
FIG. 5.
TABLE IV.
TABLE VI.
TABLE V.
FIG. 7.
FIG. 8.
FIG. 9.
TABLE VII.

Similar content being viewed by others

References

  1. X. Chen, K.F. Lam, Q. Zhang, B. Pan, M. Arruebo, and K. Yeung: Synthesis of highly selective magnetic mesoporous adsorbent. J. Phys. Chem. C 113, 9804 (2009).

    Article  CAS  Google Scholar 

  2. M. Bystrzejewski, K. Pyrzynska, A. Huczko, and H. Lange: Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon 47, 1189 (2009).

    Article  Google Scholar 

  3. G. Wang, Q. Sun, Y. Zhang, J. Fan, and L. Ma: Sorption and regeneration of magnetic exfoliated graphite as a new sorbent for oil pollution. Desalination 263, 183 (2010).

    Article  CAS  Google Scholar 

  4. M. Toyoda and M. Inagaki: Heavy oil sorption using exfoliated graphite. New application of exfoliated graphite to protect heavy oil pollution. Carbon 38, 199 (2000).

    Article  CAS  Google Scholar 

  5. M.A. Lutfullin, O.N. Shornikova, A.V. Vasiliev, K.V. Pokholok, V.A. Osadchaya, M.I. Saidaminov, N.E. Sorokina, and V.V. Avdeev: Petroleum products and water sorption by expanded graphite enhanced with magnetic iron phases. Carbon 66, 417 (2014).

    Article  CAS  Google Scholar 

  6. D. Huber: Synthesis, properties, and applications of iron nanoparticles. Small 1, 482 (2005).

    Article  CAS  Google Scholar 

  7. F. Beguin and E. Frackowiak: Electrochemical synthesis of iron supported on exfoliated graphite. J. Phys. Chem. Solids 57, 841 (1996).

    Article  CAS  Google Scholar 

  8. J. Urbaniak, J.M. Skowroński, and B. Olejnik: Preparation of Fe2O3-exfoliated graphite composite and its electrochemical properties investigated in alkaline solution. J. Solid State Electrochem. 14, 1629 (2010).

    Article  CAS  Google Scholar 

  9. M.A. Lutfullin, O.N. Shornikova, K.V. Pokholok, N.E. Sorokina, and V.V. Avdeev: Preparation and properties of exfoliated graphite modified with iron compounds. Inorg. Mater. 48, 1175 (2012).

    Article  CAS  Google Scholar 

  10. Z. Huan, J. Zhao-hui, H. Lu, and Q. Cheng-hu: Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate. Trans. Nonferrous Met. Soc. China 16, 345 (2006).

    Article  Google Scholar 

  11. O.N. Shornikova, N.E. Sorokina, and V.V. Avdeev: The effect of graphite nature on the properties of exfoliated graphite doped with nickel oxide. J. Phys. Chem. Solids 69, 1168 (2008).

    Article  CAS  Google Scholar 

  12. V.V. Avdeev, N.E. Sorokina, and O.A. Tverezovskaya. The Synthesis of GICs with HNO3. The news of Moscow University, Vol. 40, 1999, p. 422.

    CAS  Google Scholar 

  13. Y. Volfkovich, V. Bagotzky, V. Sosenkin, and I. Blinov: The standard contact porosimetry. Colloids Surf., A 187–188, 349 (2001).

    Article  Google Scholar 

  14. G.J. Long, ed.: Mossbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2 (Springer-Verlag, New York, 1987), p. 506.

  15. R. Zboril: Iron(III) oxides from thermal processes—Synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization and applications. Chem. Mater. 14, 969 (2002).

    Article  CAS  Google Scholar 

  16. T.K. Kundu, M. Mukherjee, and D. Chakravorty: Growth of nano-a-Fe2O3 in a titania matrix by the sol-gel route. J. Mater. Sci. 33, 1759 (1998).

    Article  CAS  Google Scholar 

  17. S. Pei and H-M. Cheng: The reduction of graphene oxide. Carbon 50, 3210 (2012).

    Article  CAS  Google Scholar 

  18. H-K. Jeong, Y.P. Lee, M.H. Jin, E.S. Kim, J.J. Bae, and Y.H. Lee: Thermal stability of graphite oxide. Chem. Phys. Lett. 470, 255 (2009).

    Article  CAS  Google Scholar 

  19. Y.V. Baldokhina, I.P. Suzdaleva, V.E. Prusakova, D.A. Burnazyana, V.P. Korneevb, L.V. Kovalenkob, and G.E. Folmanisb: A study of nanostructures formed in the hydrogen reduction of Fe(OH)3. Russ. J. Phys. Chem. B 6, 81 (2012).

    Article  Google Scholar 

  20. J. Phillips: Application of Mossbauer spectroscopy for the characterization of iron-containing catalysts. Hyperfine Interact. 111, 3 (1998).

    Article  CAS  Google Scholar 

  21. H-Y. Lin, Y-W. Chen, and C. Li: The mechanism of reduction of iron oxide by hydrogen. Thermochim. Acta 400, 61 (2003).

    Article  CAS  Google Scholar 

  22. A. Pineau, N. Kanari, and I. Gaballah: Kinetics of reduction of iron oxides by H2. Part I: Low temperature reduction of hematite. Thermochim. Acta 447, 89 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (Grant No. 12-03-00939a). Also, the authors acknowledge support from M.V. Lomonosov Moscow State University Program of Development for the use of their equipment, in particular S. Chernyak and S. Savilov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat Lutfullin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutfullin, M., Shornikova, O., Dunaev, A. et al. The peculiarities of reduction of iron (III) oxides deposited on expanded graphite. Journal of Materials Research 29, 252–259 (2014). https://doi.org/10.1557/jmr.2013.384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.384

Navigation