Skip to main content
Log in

Characterizing phonon thermal conduction in polycrystalline graphene

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Phonon thermal conduction was explored and discussed through a combined theoretical and simulation approach in this work. The thermal conductivity κ of polycrystalline graphene was calculated by molecular dynamics simulations based on a hexagonal patch model in close consistency with microstructural characterization in experiments. The effects of grain size, alignment, and temperature were identified with discussion on the microscopic phonon scattering mechanisms. The effective thermal conductivity was found to increase with the grain size and decrease with the mismatch angle and dislocation density at the grain boundaries (GBs). The ∼ T−1 temperature dependence of κ is significantly weakened in the polycrystals. The effect of GBs in modifying thermal transport properties of graphene was characterized by their effective width and thermal conductivity as an individual phase, which was later included in a predictive effective medium model that showed degraded reduction in thermal conductivity for grains larger than a few micrometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902 (2008).

    Article  CAS  Google Scholar 

  2. K.L. Grosse, M-H. Bae, F. Lian, E. Pop, and W.P. King: Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. Nat. Nanotechnol. 6(5), 287 (2011).

    Article  CAS  Google Scholar 

  3. H. Wang, J. Gong, Y. Pei, and Z. Xu: Thermal transfer in graphene-interfaced materials: Contact resistance and interface engineering. ACS Appl. Mater. Interfaces 5(7), 2599 (2013).

    Article  CAS  Google Scholar 

  4. K.M.F. Shahil and A.A. Balandin: Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12(2), 861 (2012).

    Article  CAS  Google Scholar 

  5. S.L. Shinde and J. Goela: High Thermal Conductivity Materials (Springer, New York, NY, 2006).

    Book  Google Scholar 

  6. E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai: Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96 (2006).

    Article  CAS  Google Scholar 

  7. B.I. Yakobson and F. Ding: Observational geology of graphene, at the nanoscale. ACS Nano 5(3), 1569 (2011).

    Article  CAS  Google Scholar 

  8. S. Bae, H. Kim, Y. Lee, X. Xu, J-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y-J. Kim, K.S. Kim, B. Ozyilmaz, J-H. Ahn, B.H. Hong, and S. Iijima: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574 (2010).

    Article  CAS  Google Scholar 

  9. P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney, M.P. Levendorf, J.W. Kevek, S. Garg, J.S. Alden, C.J. Hustedt, Y. Zhu, J. Park, P.L. McEuen, and A. Muller: Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature (London) 469(7330), 389 (2011).

    Article  CAS  Google Scholar 

  10. D.L. Nika, A.S. Askerov, and A.A. Balandin: Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 12(6), 3238 (2012).

    Article  CAS  Google Scholar 

  11. L.N. Denis and A.B. Alexander: Two-dimensional phonon transport in graphene. J. Phys. Condens. Matter 24(23), 233203 (2012).

    Article  CAS  Google Scholar 

  12. H. Zhang, G. Lee, A.F. Fonseca, T.L. Borders, and K. Cho: Isotope effect on the thermal conductivity of graphene. J. Nanomater. 2010, 7 (2010).

    Google Scholar 

  13. N. Wei, L. Xu, H-Q. Wang, and J-C. Zheng: Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility. Nanotechnology 22(10), 105705 (2011).

    Article  CAS  Google Scholar 

  14. W.J. Evans, L. Hu, and P. Keblinski: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 96(20), 203112 (2010).

    Article  CAS  Google Scholar 

  15. A.A. Balandin and D.L. Nika: Phononics in low-dimensional materials. Mater. Today 15(6), 266 (2012).

    Article  CAS  Google Scholar 

  16. A.A. Balandin: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569 (2011).

    Article  CAS  Google Scholar 

  17. D. Geng, B. Wu, Y. Guo, L. Huang, Y. Xue, J. Chen, G. Yu, L. Jiang, W. Hu, and Y. Liu: Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl. Acad. Sci. U.S.A. 109(21), 7992 (2012).

    Article  CAS  Google Scholar 

  18. J. Garg and G. Chen: Minimum thermal conductivity in superlattices: A first-principles formalism. Phys. Rev. B 87(14), 140302 (2013).

    Article  CAS  Google Scholar 

  19. W.S. Capinski and H.J. Maris: Thermal conductivity of GaAs/AlAs superlattices. Physica B 219, 699 (1996).

    Article  Google Scholar 

  20. R. Venkatasubramanian: Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61(4), 3091 (2000).

    Article  CAS  Google Scholar 

  21. G. Chen: Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57(23), 14958 (1998).

    Article  CAS  Google Scholar 

  22. A. Bagri, S-P. Kim, R.S. Ruoff, and V.B. Shenoy: Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 11(9), 3917 (2011).

    Article  CAS  Google Scholar 

  23. A. Cao and J. Qu: Kapitza conductance of symmetric tilt grain boundaries in graphene. J. Appl. Phys. 111(5), 053529 (2012).

    Article  CAS  Google Scholar 

  24. A.Y. Serov, Z-Y. Ong, and E. Pop: Effect of grain boundaries on thermal transport in graphene. Appl. Phys. Lett. 102(3), 033104 (2013).

    Article  CAS  Google Scholar 

  25. J. Kotakoski and J.C. Meyer: Mechanical properties of polycrystalline graphene based on a realistic atomistic model. Phys. Rev. B 85(19), 195447 (2012).

    Article  CAS  Google Scholar 

  26. D.V. Tuan, J. Kotakoski, T. Louvet, F. Ortmann, J.C. Meyer, and S. Roche: Scaling properties of charge transport in polycrystalline graphene. Nano Lett. 13(4), 1730 (2013).

    Article  CAS  Google Scholar 

  27. Z. Song, V.I. Artyukhov, B.I. Yakobson, and Z. Xu: Pseudo Hall-Petch strength reduction in polycrystalline graphene. Nano Lett. 13(4), 1829 (2013).

    Article  CAS  Google Scholar 

  28. Y.A. Wu, Y. Fan, S. Speller, G.L. Creeth, J.T. Sadowski, K. He, A.W. Robertson, C.S. Allen, and J.H. Warner: Large single crystals of graphene on melted copper using chemical vapor deposition. ACS Nano 6(6), 5010 (2012).

    Article  CAS  Google Scholar 

  29. D.P.H. Hasselman and L.F. Johnson: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21(6), 508 (1987).

    Article  Google Scholar 

  30. C-W. Nan, R. Birringer, D.R. Clarke, and H. Gleiter: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81(10), 6692 (1997).

    Article  CAS  Google Scholar 

  31. F. Hao, D. Fang, and Z. Xu: Mechanical and thermal transport properties of graphene with defects. Appl. Phys. Lett. 99(4), 041901 (2011).

    Article  CAS  Google Scholar 

  32. F. Hao, D. Fang, and Z. Xu: Thermal transport in crystalline Si/Ge nano-composites: Atomistic simulations and microscopic models. Appl. Phys. Lett. 100(9), 091903 (2012).

    Article  CAS  Google Scholar 

  33. O.V. Yazyev and S.G. Louie: Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B 81(19), 195420 (2010).

    Article  CAS  Google Scholar 

  34. P.K. Schelling, S.R. Phillpot, and P. Keblinski: Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 65(14), 144306 (2002).

    Article  CAS  Google Scholar 

  35. R.J. Hardy: Energy-flux operator for a lattice. Phys. Rev. 132(1), 168 (1963).

    Article  Google Scholar 

  36. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995).

    Article  CAS  Google Scholar 

  37. L. Lindsay and D.A. Broido: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81(20), 205441 (2010).

    Article  CAS  Google Scholar 

  38. A.V. Savin, Y.A. Kosevich, and A. Cantarero: Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures. Phys. Rev. B 86(6), 064305 (2012).

    Article  CAS  Google Scholar 

  39. D. Hull and D.J. Bacon: Introduction to Dislocations (Butterworth-Heinemann, Oxford, UK, 2001).

    Google Scholar 

  40. J.M. Ziman: Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, UK, 2001).

    Book  Google Scholar 

  41. Z. Xu and M.J. Buehler: Heat dissipation at a graphene–substrate interface. J. Phys. Condens. Matter 24(47), 475305 (2012).

    Article  CAS  Google Scholar 

  42. S.W. Chang, A.K. Nair, and M.J. Buehler: Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites. J. Phys. Condens. Matter 24(24), 245301 (2012).

    Article  CAS  Google Scholar 

  43. R.G. Carpenter: Principles and procedures of statistics, with special reference to the biological sciences. Eugen. Rev. 52(3), 172 (1960).

    Google Scholar 

  44. W. Cai, A.L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R.S. Ruoff: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10(5), 1645 (2010).

    Article  CAS  Google Scholar 

  45. Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, and M. Dresselhaus: The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nat. Mater. 11(9), 759 (2012).

    Article  CAS  Google Scholar 

  46. G.P. Srivastava and V. Kresin: The Physics of Phonons (Taylor & Francis, New York, NY, 1990).

    Google Scholar 

  47. W. Kim and A. Majumdar: Phonon scattering cross section of polydispersed spherical nanoparticles. J. Appl. Phys. 99(8), 084306 (2006).

    Article  CAS  Google Scholar 

  48. R. Berman: Thermal Conduction in Solids (Oxford University Press, Oxford, UK, 1976).

    Google Scholar 

  49. A. Politano, B. Borca, M. Minniti, J.J. Hinarejos, A.L.V. de Parga, and D. Farias, and R. Miranda: Helium reflectivity and Debye temperature of graphene grown epitaxially on Ru(0001). Phys. Rev. B 84(3), 035450 (2011).

    Article  CAS  Google Scholar 

  50. E. Pop, V. Varshney, and A.K. Roy: Thermal properties of graphene: Fundamentals and applications. MRS Bull. 37(12), 1273 (2012).

    Article  CAS  Google Scholar 

  51. P. Kim, L. Shi, A. Majumdar, and P.L. McEuen: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87(21), 215502 (2001).

    Article  CAS  Google Scholar 

  52. D.L. Nika, E.P. Pokatilov, A.S. Askerov, and A.A. Balandin: Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 79(15), 155413 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China through Grant Nos. 11222217 and 11002079, Tsinghua University Initiative Scientific Research Program 2011Z02174. The computation was performed on the Explorer 100 cluster system of Tsinghua National Laboratory for Information Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Xu.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Song, Z. & Xu, Z. Characterizing phonon thermal conduction in polycrystalline graphene. Journal of Materials Research 29, 362–372 (2014). https://doi.org/10.1557/jmr.2013.380

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.380

Navigation