Skip to main content

Advertisement

Log in

Effect of processing parameters on anodic nanoporous tungsten oxide film structure and porosity for hydrogen detection

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoporous tungsten oxide films were synthesized by an anodic oxidation process in aqueous NaF/HF electrolytes. The tungsten films were deposited by the radio frequency magnetron sputtering method on sapphire substrates, and the anodic oxidation process was conducted in a dual-electrode reaction chamber with graphite electrode. The effects of processing parameters (anodic voltage, time, temperature, and the operation distance) on the morphology and porosity of the synthesized films were investigated experimentally. The samples were characterized by x-ray diffraction and scanning electron microscopy. The results showed that the pore diameter and porosity increased gradually with increasing anodic voltage, whereas the “wall” of the pore was subjected to electric breakdown at 60 V, and the pore diameter and porosity decreased. The pore diameter and porosity showed an early increased and later decreased state as the operation time and distance are increased. The sensitive response in the resistive method is reaction-dominated type and is exhibited as a linear relationship as a function of hydrogen gas concentration. The response toward 500 ppm hydrogen in air is up to 15.1 with a response time of 10 min at 200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

REFERENCES

  1. T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa: Laser terahertz emission system to investigate hydrogen gas sensors. Appl. Phys. Lett. 86(26), 261102 (2005).

    Article  Google Scholar 

  2. H-T. Wang, T.J. Anderson, B.S. Kang, F. Ren, C. Li, Z-N. Low, J. Lin, B.P. Gila, S.J. Pearton, A. Osinsky, and A. Dabiran: Stable hydrogen sensors from AlGaN/GaN heterostructure diodes with TiB2-based Ohmic contacts. Appl. Phys. Lett. 90(25), 252109 (2007).

    Article  Google Scholar 

  3. W.J. Buttner, M.B. Post, R. Burgess, and C. Rivkin: An overview of hydrogen safety sensors and requirements. Int. J. Hydrogen Energy 36(3), 2462 (2011).

    Article  CAS  Google Scholar 

  4. E. Şennik, Z. Çolak, N. Kılınç, and Z.Z. Öztürk: Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor. Int. J. Hydrogen Energy 35(9), 4420 (2010).

    Article  Google Scholar 

  5. A.H. Mahan, P.A. Parilla, K.M. Jones, and A.C. Dillon: Hot-wire chemical vapor deposition of crystalline tungsten oxide nanoparticles at high density. Chem. Phys. Lett. 413(1–3), 88 (2005).

    Article  CAS  Google Scholar 

  6. Y. Qin, W. Shen, X. Li, and M. Hu: Effect of annealing on microstructure and NO2-sensing properties of tungsten oxide nanowires synthesized by solvothermal method. Sens. Actuators, B 155(2), 646 (2011).

    Article  CAS  Google Scholar 

  7. X.T. Su, F. Xiao, J.L. Lin, J.K. Jian, Y.N. Li, Q.J. Sun, and J.D. Wang: Hydrothermal synthesis of uniform WO3 submicrospheres using thiourea as an assistant agent. Mater. Charact. 61(8), 831 (2010).

    Article  CAS  Google Scholar 

  8. N. Van Hieu, H. Van Vuong, N. Van Duy, and N.D. Hoa: A morphological control of tungsten oxide nanowires by thermal evaporation method for sub-ppm NO2 gas sensor application. Sens. Actuators, B 171–172(0), 760 (2012).

    Article  Google Scholar 

  9. T-S. Yang, Z-R. Lin, and M-S. Wong: Structures and electrochromic properties of tungsten oxide films prepared by magnetron sputtering. Appl. Surf. Sci. 252(5), 2029 (2005).

    Article  CAS  Google Scholar 

  10. J. Zeng, M. Hu, W. Wang, H. Chen, and Y. Qin: NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film. Sens. Actuators, B 161(1), 447 (2012).

    Article  CAS  Google Scholar 

  11. J.Z. Ou, S. Balendhran, M.R. Field, D.G. McCulloch, A.S. Zoolfakar, R.A. Rani, S. Zhuiykov, A.P. O'Mullane, and K. Kalantar-zadeh: The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale 4(19), 5980 (2012).

    Article  CAS  Google Scholar 

  12. J.Z. Ou, R.A. Rani, S. Balendhran, A.S. Zoolfakar, M.R. Field, S. Zhuiykov, A.P. O'Mullane, and K. Kalantar-zadeh: Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic property. Electrochem. Commun. 27(0), 128 (2013).

    Article  CAS  Google Scholar 

  13. S. Kim and J. Choi: Photoelectrochemical anodization for the preparation of a thick tungsten oxide film. Electrochem. Commun. 17(0), 10 (2012).

    Article  CAS  Google Scholar 

  14. W. Lee, D. Kim, K. Lee, P. Roy, and P. Schmuki: Direct anodic growth of thick WO3 mesosponge layers and characterization of their photoelectrochemical response. Electrochim. Acta 56(2), 828 (2010).

    Article  CAS  Google Scholar 

  15. K. Kalantar-zadeh, A.Z. Sadek, H. Zheng, V. Bansal, S.K. Bhargava, W. Wlodarski, J. Zhu, L. Yu, and Z. Hu: Nanostructured WO3 films using high temperature anodization. Sens. Actuators, B 142(1), 230 (2009).

    Article  CAS  Google Scholar 

  16. J. Kukkola, J. Mäklin, N. Halonen, T. Kyllönen, G. Tóth, M. Szabó, A. Shchukarev, J-P. Mikkola, H. Jantunen, and K. Kordás: Gas sensors based on anodic tungsten oxide. Sens. Actuators, B 153(2), 293 (2011).

    Article  CAS  Google Scholar 

  17. M. Hu, J. Zeng, W. Wang, H. Chen, and Y. Qin: Porous WO3 from anodized sputtered tungsten thin films for NO2 detection. Appl. Surf. Sci. 258(3), 1062 (2011).

    Article  CAS  Google Scholar 

  18. F. Li, L. Zhang, and R.M. Metzger: On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater. 10(9), 2470 (1998).

    Article  CAS  Google Scholar 

  19. E. Palibroda: Aluminum porous oxide growth-II. On the rate determining step. Electrochim. Acta 40(8), 1051 (1995).

    Article  CAS  Google Scholar 

  20. V. Kadary and N. Klein: Electrical breakdown: I. During the anodic growth of tantalum pentoxide. J. Electrochem. Soc. 127(1), 139 (1980).

    Article  CAS  Google Scholar 

  21. N. Klein, V. Moskovici, and V. Kadary: Electrical breakdown: II. During the anodic growth of aluminum oxide. J. Electrochem. Soc. 127(1), 152 (1980).

    Article  CAS  Google Scholar 

  22. C. Ng, C. Ye, Y.H. Ng, and R. Amal: Flower-shaped tungsten oxide with inorganic fullerene-like structure: Synthesis and characterization. Cryst. Growth Des. 10(8), 3794 (2010).

    Article  CAS  Google Scholar 

  23. M. Ghorbani, F. Nasirpouri, A. Irajizad, and A. Saedi: On the growth sequence of highly ordered nanoporous anodic aluminium oxide. Mater. Des. 27(10), 983 (2006).

    Article  CAS  Google Scholar 

  24. T. Våland and K.E. Heusler: Reactions at the oxide-electrolyte interface of anodic oxide films on aluminum. J. Electroanal. Chem. Interfacial Electrochem. 149(1–2), 71 (1983).

    Article  Google Scholar 

  25. R.B. Mason: Factors affecting the formation of anodic oxide coatings in sulfuric acid electrolytes. J. Electrochem. Soc. 102(12), 671 (1955).

    Article  CAS  Google Scholar 

  26. F.R. Applewhite, J.S.L. Leach, and P. Neufeld: The temperature rise during anodizing of Al. Corros. Sci. 9(5), 305 (1969).

    Article  CAS  Google Scholar 

  27. J.Z. Ou, M.Z. Ahmad, K. Latham, K. Kalantar-zadeh, G. Sberveglieri, and W. Wlodarski: Synthesis of the nanostructured WO3 via anodization at elevated temperature for H2 sensing applications. Procedia Eng. 25(0), 247 (2011).

    Article  CAS  Google Scholar 

  28. E.A. Kellett and S.E. Rogers: The structure of oxide layers on tungsten. J. Electrochem. Soc. 110(6), 502 (1963).

    Article  CAS  Google Scholar 

  29. N. Barsan and U. Weimar: Conduction model of metal oxide gas sensors. J. Electroceram. 7(3), 143 (2001).

    Article  CAS  Google Scholar 

  30. L. Yang, S. Zhang, H. Li, G. Zhang, C. Zhan, and C. Xie: Conduction model of coupled domination by bias and neck for porous films as gas sensor. Sens. Actuators, B 176(0), 217 (2013).

    CAS  Google Scholar 

  31. A. Oprea, E. Moretton, N. Barsan, W.J. Becker, J. Wollenstein, and U. Weimar: Conduction model of SnO2 thin films based on conductance and Hall effect measurements. J. Appl. Phys. 100(3), 033716 (2006).

    Article  Google Scholar 

  32. T. Hübert, L. Boon-Brett, G. Black, and U. Banach: Hydrogen sensors: A review. Sens. Actuators, B 157(2), 329 (2011).

    Article  Google Scholar 

  33. S. Lenaerts, J. Roggen, and G. Maes: FT-IR characterization of tin dioxide gas sensor materials under working conditions. Spectrochim. Acta, Part A 51(5), 883 (1995).

    Article  Google Scholar 

  34. N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama: Interactions of tin oxide surface with O2, H2O and H2. Surf. Sci. 86(0), 335 (1979).

    Article  CAS  Google Scholar 

  35. S-C. Chang: Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements. J. Vac. Sci. Technol., A 17(1), 366 (1980).

    Article  CAS  Google Scholar 

  36. J.Y. Luo, S.Z. Deng, Y.T. Tao, F.L. Zhao, L.F. Zhu, L. Gong, J. Chen, and N.S. Xu: Evidence of localized water molecules and their role in the gasochromic effect of WO3 nanowire films. J. Phys. Chem. C 113(36), 15877 (2009).

    Article  CAS  Google Scholar 

  37. J.Z. Ou, M.H. Yaacob, M. Breedon, H.D. Zheng, J.L. Campbell, K. Latham, J.D. Plessis, W. Wlodarski, and K. Kalantar-zadeh: In situ Raman spectroscopy of H2 interaction with WO3 films. Phys. Chem. Chem. Phys. 13(16), 7330 (2011).

    Article  CAS  Google Scholar 

  38. J.Z. Ou, J.L. Campbell, D. Yao, W. Wlodarski, and K. Kalantar-zadeh: In situ Raman spectroscopy of H2 gas interaction with layered MoO3. J. Phys. Chem. C 115(21), 10757 (2011).

    Article  CAS  Google Scholar 

  39. K.J. Laidler: Chemical Kinetics (McGraw-Hill Book Company, New York, NY, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Zhang, Y., Cai, Y. et al. Effect of processing parameters on anodic nanoporous tungsten oxide film structure and porosity for hydrogen detection. Journal of Materials Research 29, 166–174 (2014). https://doi.org/10.1557/jmr.2013.369

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.369

Keywords

Navigation