Skip to main content
Log in

Realization of enhanced room temperature ferromagnetism in pure and V-doped ZnO films on TOP functionalization

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present study, we report an activation and enhancement of room temperature ferromagnetism in pure ZnO and V-doped ZnO (Zn0.95V0.05O and Zn0.90V0.10O) thin films by trioctylphosphine (TOP) functionalization. X-ray diffraction patterns show a slight decrease in the intensity of the diffraction peak on TOP functionalization. Atomic force micrographs of pure and V-doped ZnO films reveal no disorder in the film surface on TOP functionalization. The chemical bond formation of TOP on ZnO film surface was examined by x-ray photoelectron spectroscopy measurements. Photoluminescence measurements of TOP-functionalized ZnO films show enhancements of UV emission and quenching of visible emission. TOP-functionalized ZnO films reveal enhanced ferromagnetic behavior as evidenced from vibrating sample magnetometer measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

REFERENCES

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger: Spintronics: A spin-based electronics vision for the future. Science 294, 1488 (2001).

    Article  CAS  Google Scholar 

  2. H. Gu, Y. Jiang, Y. Xu, and M. Yan: Evidence of the defect-induced ferromagnetism in Na and Co codoped ZnO. Appl. Phys. Lett. 98, 012502 (2011).

    Article  CAS  Google Scholar 

  3. B. Pal and P.K. Giri: High temperature ferromagnetism and optical properties of Co doped ZnO nanoparticles. J. Appl. Phys. 108, 084322 (2010).

    Article  CAS  Google Scholar 

  4. S.D. Yoon, Y. Chen, D. Heiman, A. Yang, N. Sun, C. Victoria, and V.G. Harris: Room temperature magnetism in semiconducting films of ZnO doped with ferric ions. J. Appl. Phys. 99, 08M109 (2006).

    Article  CAS  Google Scholar 

  5. Q. Xu, H. Schmidt, L. Hartmann, H. Hochmuth, M. Lorentz, A. Setzer, P. Esquinazi, C. Meinecke, and M. Grundmann: Room temperature ferromagnetism in Mn-doped ZnO films mediated by acceptor defects. Appl. Phys. Lett. 91, 092503 (2007).

    Article  CAS  Google Scholar 

  6. S. Ramachandran, A. Tiwar, and J. Narayan: Zn0.9Co0.1O-based diluted magnetic semiconducting thin films. Appl. Phys. Lett. 84, 5255 (2004).

    Article  CAS  Google Scholar 

  7. H.J. Lee, S.Y. Jeong, C.R. Cho, and C.H. Park: Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys. Lett. 81, 4020 (2002).

    Article  CAS  Google Scholar 

  8. H. Liu, X. Zhang, L. Li, Y.X. Wang, K.H. Gao, Z.Q. Li, R.K. Zheng, S.P. Ringer, B. Zhang, and X.X. Zhang: Role of point defects in room-temperature ferromagnetism of Cr-doped ZnO. Appl. Phys. Lett. 91, 072511 (2007).

    Article  CAS  Google Scholar 

  9. D.A. Schwartz, K.R. Kittilstved, and D.R. Gamelin: Above-room-temperature ferromagnetic Ni2+-doped ZnO thin films prepared from colloidal diluted magnetic semiconductor quantum dots. Appl. Phys. Lett. 85, 1395 (2004).

    Article  CAS  Google Scholar 

  10. C. Liu, F. Yun, B. Xiao, S.J. Cho, Y.T. Moon, H. Morkoc, M. Abouzaid, R. Ruterana, K.M. Yu, and W. Walukiewicz: Structural analysis of ferromagnetic Mn-doped ZnO thin films deposited by radio frequency magnetron sputtering. J. Appl. Phys. 97, 126107 (2005).

    Article  CAS  Google Scholar 

  11. H. Pan, J.B. Yi, L. Shen, R.Q. Wu, J.H. Yang, J.Y. Lin, Y.P. Feng, J. Deng, L.H. Van, and J.H. Yin: Room-temperature ferromagnetism in carbon-doped ZnO. Phys. Rev. B 99, 127201 (2007).

    CAS  Google Scholar 

  12. M. Ferhat, A. Zaoui, and R. Ahuja: Magnetism and band gap narrowing in Cu-doped ZnO. Appl. Phys. Lett. 94, 142502 (2009).

    Article  CAS  Google Scholar 

  13. T.S. Herng, S.P. Lau, C.S. Wei, L. Wang, B.C. Zhao, M. Tanemura, and Y. Akaile: Stable ferromagnetism in p-type carbon-doped ZnO nanoneedles. Appl. Phys. Lett. 95, 133103 (2009).

    Article  CAS  Google Scholar 

  14. C.F. Yu, T.J. Lin, S.J. Sun, and H. Chou: Origin of ferromagnetism in nitrogen embedded ZnO: N thin films. J. Phys. D: Appl. Phys. 40, 6497 (2007).

    Article  CAS  Google Scholar 

  15. S. Chawla, K. Jayanthi, and R.K. Kotnala: Room-temperature ferromagnetism in Li-doped p-type luminescent ZnO nanorods. Phys. Rev. B, 79, 125204 (2009).

    Article  CAS  Google Scholar 

  16. G.Z. Xing, J.B. Yi, J.G. Tao, T. Liu, L.M. Wong, Z. Zhang, G.P. Li, S.J. Wang, J. Ding, T.C. Sum, C.H.A. Huan, and T. Wu: Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity. Adv. Mater. 20, 3521 (2008).

    Article  CAS  Google Scholar 

  17. C. Lao, Y. Li, C.P. Wong, and Z.L. Wang: Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization. Nano Lett. 7, 1323 (2007).

    Article  CAS  Google Scholar 

  18. J.W. Spalenka, P. Gopalan, H.E. Katz, and P.G. Evans: Electron mobility enhancement in ZnO thin films via surface modification by carboxylic acids. Appl. Phys. Lett. 102, 041602 (2013).

    Article  CAS  Google Scholar 

  19. W. Chen, F. Li, Y. Chen, K. Yuan, and L. Chen: Enhancement of the ultraviolet emission of ZnO nanorods by terphenyl liquid-crystalline ligands modification. Appl. Surf. Sci. 257, 8788 (2011).

    Article  CAS  Google Scholar 

  20. M.A. Garcia, J.M. Merino, E.F. Pinel, A. Quesada, J. de la Venta, M.L.R. González, G.R. Castro, P. Crespo, J. Llopis, J.M. González-Calbet, and A. Hernando: Magnetic properties of ZnO nanoparticles. Nano Lett. 7, 1489 (2009).

    Article  CAS  Google Scholar 

  21. D. Ortega, S.J. Chen, K. Suzuki, and J.S. Garitaonandia: Room temperature spontaneous magnetization in calcined trioctylphosphine-ZnO nanoparticles. J. Appl. Phys. 111, 07C314 (2012).

    Article  CAS  Google Scholar 

  22. A. Quesada, M.A. Garcia, J. de la Venta, E. Fernandez Pinel, J.M. Merino, and A. Hernando: Ferromagnetic behaviour in semiconductors: A new magnetism in search of spintronic materials. Eur. Phys. J. B 59, 457 (2007).

    Article  CAS  Google Scholar 

  23. J.F. Liu, E.Z. Liu, H. Wang, N.H. Su, J. Qi, and J.Z. Jiang: Surface magnetism in amine-capped ZnO nanoparticles. Nanotechnology 20, 165702 (2009).

    Article  CAS  Google Scholar 

  24. Q. Wang, Q. Sun, and P. Jena: Ligand induced ferromagnetism in ZnO Nanostructures. J. Chem. Phys. 129, 164714 (2008).

    Article  CAS  Google Scholar 

  25. E.Z. Liu and J.Z. Jiang: Magnetism of O-terminated ZnO(0001) with adsorbates. J. Phys. Chem. C 113, 16116 (2009).

    Article  CAS  Google Scholar 

  26. J.A. Rodriguez: Orbital-band interactions and the reactivity of molecules on oxide surfaces: From explanations to predictions. Theor. Chem. Acc. 107, 117 (2002).

    Article  CAS  Google Scholar 

  27. V.A. Henrich and P.A. Cox: The Surface Science of Metal Oxides (University Press, Cambridge, 1994).

    Google Scholar 

  28. H.H. Kung: Transition Metal Oxides: Surface Chemistry and Catalysis (Elsevier, Amsterdam, 1989).

    Google Scholar 

  29. G. Jayalakshmi, N. Gopalakrishnan, B.K. Panigrahi, and T. Balasubramanian: Grain boundary defects induced room temperature ferromagnetism in V doped ZnO thin films. Cryst. Res. Technol. 46, 1257 (2011).

    Article  CAS  Google Scholar 

  30. H.Y. Kwong, M.H. Wong, Y.W. Wong, and K.H. Wong: Superhydrophobicity of polytetrafluoroethylene thin film fabricated by pulsed laser deposition. Appl. Surf. Sci. 253, 8841 (2007).

    Article  CAS  Google Scholar 

  31. W.L. Ong, C. Zhang, and G.W. Ho: Ammonia plasma modification towards a rapid and low temperature approach for tuning electrical conductivity of ZnO nanowires on flexible substrates. Nanoscale 3, 4206 (2011).

    Article  CAS  Google Scholar 

  32. P. Cao, D.X. Zhao, J.Y. Zhang, D.Z. Shen, Y.M. Lu, B. Yao, B.H. Li, Y. Bai, and X.W. Fan: Optical and electrical properties of p-type ZnO fabricated by NH3 plasma post-treated ZnO thin films. Appl. Surf. Sci. 254, 2900 (2008).

    Article  CAS  Google Scholar 

  33. B.J. Coppa, R.F. Davis, and R.J. Nemanich: Gold Schottky contacts on oxygen plasma-treated, n-type ZnO(000\(\bar 1\)). Appl. Phys. Lett. 82, 400 (2003).

    Article  CAS  Google Scholar 

  34. D.E. Pugel, R.D. Vispute, S.S. Hullavarad, T. Venkatesan, and B. Varughese: Oxygen-dependent phosphorus networking in ZnO thin films grown by low temperature rf sputtering. J. Appl. Phys. 101, 063538 (2007).

    Article  CAS  Google Scholar 

  35. A. Allenic, W. Guo, Y.B. Chen, M.B. Katz, G.Y. Zhao, Y. Che, Z.D. Hu, B. Liu, S.B. Zhang, and X.Q. Pan: Amphoteric phosphorus doping for stable p-type ZnO. Adv. Mater. 19, 3333 (2007).

    Article  CAS  Google Scholar 

  36. G.W. Cong, W.Q. Peng, H.Y. Wei, X.X. Han, J.J. Wu, X.L. Liu, Q.S. Zhu, Z.G. Wang, J.G. Lu, Z.Z. Ye, L.P. Zhu, H.J. Qian, R. Su, C.H. Hong, J. Zhong, K. Ibrahim, and T.D. Hu: Comparison of valence band X-ray photoelectron spectrum between Al?N-codoped and N-doped ZnO films. Appl. Phys. Lett. 88, 062110 (2006).

    Article  CAS  Google Scholar 

  37. G. Liu, J.A. Rodriguez, Z. Chang, J. Hrbek, and C.H.F. Pedan: Adsorption and reaction of SO2 on model Ce1 - xZrxO2(111) catalysts. J. Phys. Chem. B 108, 2931 (2004).

    Article  CAS  Google Scholar 

  38. Y.Z. Wu, Y.J. Zeng, H.P. He, J.M. Lin, J. Jiang, Z.Z. Ye, and B.H. Zhao: Fabrication of phosphorus-doped ZnO quantum dots by metal organic chemical vapor deposition. Nanoelectronics Conference (INEC 2010), 3rd International Jan. 3–8, 2010.

    Google Scholar 

  39. J. Singh, A. Mukherjee, S.K. Sengupta, J. Im, G.W. Peterson, and J.E. Whitten: Sulfur dioxide and nitrogen dioxide adsorption on zinc oxide and zirconium hydroxide nanoparticles and the effect on photoluminescence. Appl. Surf. Sci. 258, 5778 (2012).

    Article  CAS  Google Scholar 

  40. G. Jayalakshmi, K. Saravanan, and T. Balasubramanian: Impact of thiol and amine functionalization on photoluminescence properties of ZnO films. J. Lumin. 140, 21 (2013).

    Article  CAS  Google Scholar 

  41. C.C. Lin, H.P. Chen, H.C. Liao, and S.Y. Chen: Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Appl. Phys. Lett. 86, 183103 (2005).

    Article  CAS  Google Scholar 

  42. D.R. Jung, J. Kim, and B. Park: Surface-passivation effects on the photoluminescence enhancement in ZnS:Mn nanoparticles by ultraviolet irradiation with oxygen bubbling. Appl. Phys. Lett. 96, 211908 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors acknowledge the DST, Government of India for the VSM facility under the FIST program sanctioned to the Department of Physics, NIT, Tiruchirappalli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Balasubramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayalakshmi, G., Balasubramanian, T. Realization of enhanced room temperature ferromagnetism in pure and V-doped ZnO films on TOP functionalization. Journal of Materials Research 29, 158–165 (2014). https://doi.org/10.1557/jmr.2013.359

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.359

Keywords

Navigation