Skip to main content
Log in

Silver-decorated ZnO hexagonal nanoplate arrays as SERS-active substrates: An experimental and simulation study

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have fabricated Ag-decorated ZnO nanoplate arrays by combining water-bath heating toward ZnO hexagonal nanoplate arrays and subsequent decoration of Ag films or nanoparticles on the ZnO surfaces by magnetron sputtering or photoreduction. Experimental surface-enhanced Raman scattering (SERS) results show that Ag-film-ZnO hybrid substrates with different Ag sputtering times exhibit a large difference in enhanced SERS signals for Rhodamine 6G (10−7 M). Atomic force microscope analysis reveals that two kinds of positions create abundant “hot spots” in this SERS substrate: one is located at the gap between adjacent separate Ag-film-ZnO hybrid nanoplates, and the other is located at the V-grooves formed by two adjacent interlaced Ag-film-ZnO hybrid nanoplates. The effects of simultaneous changes in interplate spacing and groove wall angle are considered to be the key factors affecting the SERS of our prepared Ag-film-ZnO hybrid substrates, which have also been evaluated by finite-difference time-domain simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. M. Fleischmann, P.J. Hendra, and A.J. McQuillan: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163 (1974).

    Article  CAS  Google Scholar 

  2. D. Li, S. Wu, Q. Wang, Y. Wu, W. Peng, and L. Pan: Ag@C core-shell colloidal nanoparticles prepared by the hydrothermal route and the low temperature heating-stirring method and their application in surface enhanced Raman scattering. J. Phys. Chem. C 116(22), 12283 (2012).

    Article  CAS  Google Scholar 

  3. C. Shen, C. Hui, T. Yang, C. Xiao, J. Tian, L. Bao, S. Chen, H. Ding, and H. Gao: Monodisperse noble-metal nanoparticles and their surface enhanced Raman scattering properties. Chem. Mater. 20(22), 6939 (2008).

    Article  CAS  Google Scholar 

  4. B. Nikoobakht and M.A. El-Sayed: Surface-enhanced Raman scattering studies on aggregated gold nanorods. J. Phys. Chem. A 107(18), 3372 (2003).

    Article  CAS  Google Scholar 

  5. S.J. Lee, A.R. Morrill, and M. Moskovits: Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 128(7), 2200 (2006).

    Article  CAS  Google Scholar 

  6. T. Wang, X. Hu, and S. Dong: Surfactantless synthesis of multiple shapes of gold nanostructures and their shape-dependent SERS spectroscopy. J. Phys. Chem. B 110(34), 16930 (2006).

    Article  CAS  Google Scholar 

  7. L.Y. Cao, B. Nabet, and J.E. Spanier: Enhanced Raman scattering from individual semiconductor nanocones and nanowires. Phys. Rev. Lett. 96(15), 157402 (2006).

    Article  CAS  Google Scholar 

  8. L.B. Yang, X. Jiang, W.D. Ruan, B. Zhao, W.Q. Xu, and J.R. Lombardi: Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: Charge-transfer contribution. J. Phys. Chem. C 112(50), 20095 (2008).

    Article  CAS  Google Scholar 

  9. S.M. Prokes, O.J. Glembocki, J.E. Livenere, T.U. Tumkur, J.K. Kitur, G. Zhu, B. Wells, V.A. Podolskiy, and M.A. Noginov: Hyperbolic and plasmonic properties of silicon/Ag aligned nanowire arrays. Opt. Express 21(12), 14962 (2013).

    Article  CAS  Google Scholar 

  10. F. Liao, L. Cheng, J. Li, M.W. Shao, Z.H. Wang, and S.T. Lee: An effective oxide shell-protected surface-enhanced Raman scattering (SERS) substrate: The easy route to Ag@AgxO-silicon nanowire films via surface doping. J. Mater. Chem. C 1(8), 1628 (2013).

    Article  CAS  Google Scholar 

  11. Y. Wu, K. Liu, X. Li, and S. Pan: Integrate silver colloids with silicon nanowire arrays for surface-enhanced Raman scattering. Nanotechnology 22(21), 215701 (2011).

    Google Scholar 

  12. M.F. Peng, J. Gao, P.P. Zhang, Y. Li, X.H. Sun, and S.T. Lee: Reductive self-assembling of Ag nanoparticles on germanium nanowires and their application in ultrasensitive surface-enhanced Raman spectroscopy. Chem. Mater. 23(14), 3296 (2011).

    Article  CAS  Google Scholar 

  13. L.B. Yang, X. Jiang, W.D. Ruan, J.X. Yang, B. Zhao, W.Q. Xu, and J.R. Lombardi: Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites. J. Phys. Chem. C 113(36), 16226 (2009).

    Article  CAS  Google Scholar 

  14. A. Mills, G. Hill, M. Stewart, D. Graham, W.E. Smith, S. Hodgen, P.J. Halfpenny, K. Faulds, and P. Robertson: Characterization of novel Ag on TiO2 films for surface-enhanced Raman scattering. Appl. Spectrosc. 58(8), 922 (2004).

    Article  CAS  Google Scholar 

  15. D. Li, L. Pan, S. Li, K. Liu, S. Wu, and W. Peng: Controlled preparation of uniform TiO2-catalyzed silver nanoparticle films for surface-enhanced Raman scattering. J. Phys. Chem. C 117(13), 6861 (2013).

    Article  CAS  Google Scholar 

  16. M. Es-Souni, M. Es-Souni, S. Habouti, N. Pfeiffer, A. Lahmar, M. Dietze, and C-H. Solterbeck: Brookite formation in TiO2 Ag nanocomposites and visible-light-induced templated growth of Ag nanostructures in TiO2. Adv. Funct. Mater. 20(3), 377 (2010).

    Article  CAS  Google Scholar 

  17. L. Chen, L. Luo, Z. Chen, M. Zhang, J.A. Zapien, C.S. Lee, and S.T. Lee: ZnO/Au composite nanoarrays as substrates for surface-enbanced Raman scattering detection. J. Phys. Chem. C 114(1), 93 (2010).

    Article  CAS  Google Scholar 

  18. W. Song, Y. Wang, H. Hu, and B. Zhao: Fabrication of surface-enhanced Raman scattering-active ZnO/Ag composite microspheres. J. Raman Spectrosc. 38(10), 1320 (2007).

    Article  CAS  Google Scholar 

  19. C. Cheng, B. Yan, S.M. Wong, X. Li, W. Zhou, T. Yu, Z. Shen, H. Yu, and H.J. Fan: Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Interfaces 2(7), 1824 (2010).

    Article  CAS  Google Scholar 

  20. R. Georgekutty, M.K. Seery, and S.C. Pillai: A highly efficient Ag-ZnO photocatalyst: Synthesis, properties, and mechanism. J. Phys. Chem. C 112(35), 13563 (2008).

    Article  CAS  Google Scholar 

  21. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005).

    Article  CAS  Google Scholar 

  22. N.W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu: Epitaxial ZnO piezoelectric thin films for saw filters. Mater. Sci. Semicond. Process. 2(3), 247 (1999).

    Article  CAS  Google Scholar 

  23. J-H. He, C.L. Hsin, J. Liu, L.J. Chen, and Z.L. Wang: Piezoelectric gated diode of a single ZnO nanowire. Adv. Mater. 19(6), 781 (2007).

    Article  CAS  Google Scholar 

  24. A. Dalcorso, M. Posternak, R. Resta, and A. Baldereschi: Ab initio study of piezoelectricity and spontaneous polarization in ZnO. Phys. Rev. B. 50(15), 10715 (1994).

    Article  CAS  Google Scholar 

  25. J.G.E. Gardeniers, Z.M. Rittersma, and G.J. Burger: Preferred orientation and piezoelectricity in sputtered ZnO films. J. Appl. Phys. 83(12), 7844 (1998).

    Article  CAS  Google Scholar 

  26. H.J. Xiang, J. Yang, J.G. Hou, and Q. Zhu: Piezoelectricity in ZnO nanowires: A first-principles study. Appl. Phys. Lett. 89(22), 223111 (2006).

    Article  CAS  Google Scholar 

  27. A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, and M. Okuda: Transparent conducting Al-doped ZnO thin films prepared by pulsed laser deposition. Jpn. J. Appl. Phys., Part 2 35(1A), L56 (1996).

    Article  CAS  Google Scholar 

  28. R.P. Wang, L.L.H. King, and A.W. Sleight: Highly conducting transparent thin films based on zinc oxide. J. Mater. Res. 11(7), 1659 (1996).

    Article  CAS  Google Scholar 

  29. M. Chen, Z.L. Pei, X. Wang, C. Sung, and L.S. Wen: Structural, electrical, and optical properties of transparent conductive oxide ZnO: Al films prepared by dc magnetron reactive sputtering. J. Vac. Sci. Technol., A 19(3), 963 (2001).

    Article  CAS  Google Scholar 

  30. N.L. Dehuff, E.S. Kettenring, D. Hong, H.Q. Chiang, J.F. Wager, R.L. Hoffman, C.H. Park, and D.A. Keszler: Transparent thin-film transistors with zinc indium oxide channel layer. J. Appl. Phys. 97(6), 064505 (2005).

    Article  CAS  Google Scholar 

  31. P. Mitra, A.P. Chatterjee, and H.S. Maiti: ZnO thin film sensor. Mater. Lett. 35(1-2), 33 (1998).

    Article  CAS  Google Scholar 

  32. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, and C.L. Lin: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84(18), 3654 (2004).

    Article  CAS  Google Scholar 

  33. J.X. Wang, X.W. Sun, Y. Yang, H. Huang, Y.C. Lee, O.K. Tan, and L. Vayssieres: Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology 17(19), 4995 (2006).

    Article  CAS  Google Scholar 

  34. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, and H.J. Lee: Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81(19), 3648 (2002).

    Article  CAS  Google Scholar 

  35. C.X. Xu and X.W. Sun: Field emission from zinc oxide nanopins. Appl. Phys. Lett. 83(18), 3806 (2003).

    Article  CAS  Google Scholar 

  36. Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, and D.P. Yu: Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83(1), 144 (2003).

    Article  CAS  Google Scholar 

  37. T. Premkumar, Y.S. Zhou, Y.F. Lu, and K. Baskar: Optical and field-emission properties of ZnO nanostructures deposited using high-pressure pulsed laser deposition. ACS Appl. Mater. Interfaces 2(10), 2863 (2010).

    Article  CAS  Google Scholar 

  38. J. Yin, Y. Zang, C. Yue, Z. Wu, S. Wu, J. Li, and Z. Wu: Ag nanoparticle/ZnO hollow nanosphere arrays: Large scale synthesis and surface plasmon resonance effect induced Raman scattering enhancement. J. Mater. Chem. 22(16), 7902 (2012).

    Article  CAS  Google Scholar 

  39. S. Deng, H.M. Fan, X. Zhang, K.P. Loh, C.L. Cheng, C.H. Sow, and Y.L. Foo: An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array. Nanotechnology 20(17), 175705 (2009).

    Article  CAS  Google Scholar 

  40. H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu: Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Adv. Funct. Mater. 22(1), 218 (2012).

    Article  CAS  Google Scholar 

  41. J. Liu, L. Xu, B. Wei, W. Lv, H. Gao, and X. Zhang: One-step hydrothermal synthesis and optical properties of aluminium doped ZnO hexagonal nanoplates on a zinc substrate. CrystEngComm 13(5), 1283 (2011).

    Article  CAS  Google Scholar 

  42. F. Xu, Z.Y. Yuan, G.H. Du, M. Halasa, and B.L. Su: High-yield synthesis of single-crystalline ZnO hexagonal nanoplates and accounts of their optical and photocatalytic properties. Appl. Phys. A 86(2), 181 (2007).

    Article  CAS  Google Scholar 

  43. S.N. Magonov, V. Elings, and M.H. Whangbo: Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf. Sci. 375(2-3), L385 (1997).

    Article  CAS  Google Scholar 

  44. Z.L. Wang, X.Y. Kong, and J.M. Zuo: Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 91(18), 185502 (2003).

    Article  CAS  Google Scholar 

  45. P. Hildebrandt and M. Stockburger: Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 88(24), 5935 (1984).

    Article  CAS  Google Scholar 

  46. D. Li, L. Pan, S. Wu, and S. Li: An active surface enhanced Raman scattering substrate using carbon nanocoils. J. Mater. Res. 28(16), 2113 (2013).

    Article  CAS  Google Scholar 

  47. E.C. Le Ru, E. Blackie, M. Meyer, and P.G. Etchegoin: Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 111(37), 13794 (2007).

    Article  CAS  Google Scholar 

  48. C. Oubre and P. Nordlander: Finite-difference time-domain studies of the optical properties of nanoshell dimers. J. Phys. Chem. B 109(20), 10042 (2005).

    Article  CAS  Google Scholar 

  49. J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang, and Z.Q. Tian: Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287), 392 (2010).

    Article  CAS  Google Scholar 

  50. S. Li, M.L. Pedano, S-H. Chang, C.A. Mirkin, and G.C. Schatz: Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods. Nano Lett. 10(5), 1722 (2010).

    Article  CAS  Google Scholar 

  51. S.I. Bozhevolnyi: Effective-index modeling of channel plasmon polaritons. Opt. Express 14(20), 9467 (2006).

    Article  Google Scholar 

  52. K.C. Vernon, T.J. Davis, F.H. Scholes, D.E. Gomez, and D. Lau: Physical mechanisms behind the SERS enhancement of pyramidal pit substrates. J. Raman Spectrosc. 41(10), 1106 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities of China (Grant Nos. DUT13LK21 and DUT13ZD107), National Natural Science Foundation of China (Grant Nos. 61137005 and 11274055), National High-tech R&D Program of China (Grant No. 2011AA050516), and Program for New Century Excellent Talents in University (Grant No. NCET-12-0077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Liu.

Supplementary Material

Supplementary Material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2013.356.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, K., Li, D., Li, R. et al. Silver-decorated ZnO hexagonal nanoplate arrays as SERS-active substrates: An experimental and simulation study. Journal of Materials Research 28, 3374–3383 (2013). https://doi.org/10.1557/jmr.2013.356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.356

Navigation