Skip to main content
Log in

Copper–nickel oxide thin film library reactively co-sputtered from a metallic sectioned cathode

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A Cu–Ni sectioned cathode made up of two hemicycles of each of the metals was used for reactive co-sputtering of a thin film combinatorial library of Cu–Ni oxides covering a total compositional spread of 63 at.%. The thickness profiling of the library showed a nonuniform film thickness with a maximum region shifted toward the Cu side of the cathode. The presence of CuO, Cu2O, NiO, and metallic Cu–Ni alloys was identified during the scanning x-ray diffraction investigations along the compositional spread. A distinct structural zone was defined between Cu–14 at.% Ni and Cu–19 at.% Ni, where the scanning electron microscopy investigations showed a higher surface porosity combined with smaller grain sizes. This zone corresponds to the maximum film thickness region and correlates well with the position of the maximum work function of the Cu–Ni oxide films as mapped using a scanning Kelvin probe. During local corrosion studies focused on Cu dissolution, an improved corrosion resistance was identified in the Ni rich side of the compositional spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

REFERENCES

  1. D. Monell: Manufacture of Nickel-Copper Alloys. U.S. Patent No. 8 112 39, 1911.

  2. M.A. Laughton and D.F. Warne: Electrical Engineer’s Reference Book, 6th ed. (Elsevier Science, Oxford, England, 2003), pp. 10–43.

    Google Scholar 

  3. J.W. Schultze and A.W. Hassel: Passivity of metals, alloys, and semiconductors. In Encyclopedia of electrochemistry, Vol. 4. Corrosion and Oxide Films; A.J. Bard, M. Stratmann, and G.S. Frankel (Wiley-VCH, Weinheim, Germany, 2007); pp. 216-280 & pp. 188-189.

    Google Scholar 

  4. K. Hashimoto, M. Yamasaki, S. Meguro, T. Sasaki, H. Katagiri, K. Izumiya, N. Kumagai, H. Habazaki, E. Akiyama, and K. Asami: Materials for global carbon dioxide recycling. Corros. Sci. 44, 371 (2002).

    Article  CAS  Google Scholar 

  5. M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto: Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem. Mater. 14, 2812 (2002).

    Article  CAS  Google Scholar 

  6. I. Hotovy, J. Huran, J. Janik, and A.B. Kobzev: Deposition and properties of nickel oxide films produced by DC reactive magnetron sputtering. Vacuum 51, 157 (1998).

    Article  CAS  Google Scholar 

  7. I. Hotovy, D. Buc, S. Hascik, and O. Nennewitz: Characterization of NiO thin films deposited by reactive sputtering. Vacuum 50, 41 (1998).

    Article  CAS  Google Scholar 

  8. H-L. Chen and Y-S. Yang: Effect of crystallographic orientations on electrical properties of sputter-deposited nickel oxide thin films. Thin Solid Films 516, 5590 (2008).

    Article  CAS  Google Scholar 

  9. J-L. Yang, Y-S. Lai, and J.S. Chen: Effect of heat treatment on the properties of non-stoichiometric p-type nickel oxide films deposited by reactive sputtering. Thin Solid Films 488, 242 (2005).

    Article  CAS  Google Scholar 

  10. A. Karpinski, A. Ferrec, M. Richard-Plouet, L. Cattin, M.A. Djouadi, L. Brohan, and P-Y. Jouan: Deposition of nickel oxide by direct current reactive sputtering effect of oxygen partial pressure. Thin Solid Films 520, 3609 (2012).

    Article  CAS  Google Scholar 

  11. L. Courtade, C. Turquat, C. Muller, J.G. Lisoni, L. Goux, D.J. Wouters, D. Goguenheim, P. Roussel, and L. Ortega: Oxidation kinetics of Ni metallic films- formation of NiO-based resistive switching structures. Thin Solid Films 516, 4083 (2008).

    Article  CAS  Google Scholar 

  12. S. Otsuka, S. Furuya, R. Takeda, T. Shimizu, S. Shingubara, T. Watanabe, Y. Takano, and K. Takase: Resistive switching characteristics of NiO/Ni nanostructure. Microelectron. Eng. 98, 367 (2012).

    Article  CAS  Google Scholar 

  13. C.B. Lee, B.S. Kang, A. Benayad, M.J. Lee, S-E. Ahn, K.H. Kim, G. Stefanovic, Y. Park, and I.K. Yoo: Effects of metal electrodes on the resistive memory switching property of NiO thin films. Appl. Phys. Lett. 93, 042115 (2008).

    Article  Google Scholar 

  14. X. Song, L. Gao, and S. Mathur: Synthesis, characterization, and gas sensing properties of porous nickel oxide nanotubes. J. Phys. Chem. C 115, 21730 (2011).

    Article  CAS  Google Scholar 

  15. N. Nancheva, P. Docheva, and M. Misheva: Defects in Cu and Cu–O films produced by reactive magnetron sputtering. Mater. Lett. 39, 81 (1999).

    Article  CAS  Google Scholar 

  16. R. Chandra, P. Taneja, and P. Ayyub: Optical properties of transparent nanocrystalline Cu2O thin films synthesized by high pressure gas sputtering. Nanostruct. Mater. 11, 505 (1999).

    Article  CAS  Google Scholar 

  17. A. Sivasankar Reddy, S. Uthanna, and P. Sreedhara Reddy: Properties of dc magnetron sputtered Cu2O films prepared at different sputtering pressures. Appl. Surf. Sci. 253, 5287 (2007).

    Article  Google Scholar 

  18. A. Sivasankar Reddy, G. Venkata Rao, S. Uthanna, and P. Sreedhara Reddy: Structural and optical studies on dc reactive magnetron sputtered Cu2O films. Mater. Lett. 60, 1617 (2006).

    Article  Google Scholar 

  19. H. Zhu, J. Zhang, C. Li, F. Pan, T. Wang, and B. Huang: Cu2O thin films deposited by reactive direct current magnetron sputtering. Thin Solid Films 517, 5700 (2009).

    Article  CAS  Google Scholar 

  20. M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J.N. Kondoa, and K. Domen: Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. (3), 357 (1998). doi: 10.1039/A707440I.

    Google Scholar 

  21. K. Akimoto, S. Ishizuka, M Yanagita, Y Nawa, G.K. Paul, and T. Sakurai: Thin film deposition of Cu2O and application for solar cells. Sol. Energy 80, 715 (2006).

    Article  CAS  Google Scholar 

  22. W-Y. Yang and S-W. Rhee: Effect of electrode material on the resistance switching of Cu2O films. Appl. Phys. Lett. 91, 232907 (2007).

    Article  Google Scholar 

  23. V. Miteva, D. Karpuzov, P. Ivanov, and St. Angelova: Stoichiometry effects at Cu-Ni alloy surfaces during 5 keV Ar ion sputtering at room temperature. Nucl. Instrum. Methods Phys. Res., Sect. B 85, 340 (1994).

    Article  CAS  Google Scholar 

  24. W.M. Posadowski: Self-sustained magnetron co-sputtering of Cu and Ni. Thin Solid Films 459, 258 (2004).

    Article  CAS  Google Scholar 

  25. M. Yang, Z. Shi, J. Feng, H. Pu, G. Li, J. Zhou, and Q. Zhang: Copper doped nickel oxide transparent p-type conductive thin films deposited by pulsed plasma deposition. Thin Solid Films 519, 3021 (2011).

    Article  CAS  Google Scholar 

  26. N. Kikuchi, K. Tonooka, and E. Kusano: Mechanisms of carrier generation and transport in Ni-doped Cu2O. Vacuum 80, 756 (2006).

    Article  CAS  Google Scholar 

  27. W. Burgstaller, A.I. Mardare, and A.W. Hassel: Copper-zinc thin films reactively co-sputtered from a two-component sectioned cathode. Phys. Status Solidi A 210, 994 (2013).

    Article  CAS  Google Scholar 

  28. M. Voith, G. Luckeneder, and A.W. Hassel: In situ identification and quantification in a flow cell with AAS downstream analytics. J. Sol. State Electrochem. 16, 3473 (2012).

    Article  CAS  Google Scholar 

  29. K. Wasa and S. Hayakawa: Handbook of Sputter Deposition Technology (Noyes Publications, Westwood, NJ, 2003), p. 57.

    Google Scholar 

  30. M. Ohring: Materials Science of Thin Films, 2nd ed. (Academic Press, Waltham, MA, 2001), p. 176.

    Google Scholar 

  31. J.A. Thornton: The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol., A 4, 3056 (1986).

    Article  Google Scholar 

  32. A.I. Mardare, A.P. Yadav, A.D. Wieck, M. Stratmann, and A.W. Hassel: Combinatorial electrochemistry on Al-Fe alloys. Sci. Technol. Adv. Mater. 9, 035009 (2008).

    Article  Google Scholar 

  33. A.I. Mardare, A. Ludwig, A. Savan, A.D. Wieck, and A.W. Hassel: High-throughput study of the anodic oxidation of Hf-Ti thin films. Electrochim. Acta 54, 5171 (2009).

    Article  CAS  Google Scholar 

  34. A.I. Mardare, A. Savan, A. Ludwig, A.D. Wieck, and A.W. Hassel: High-throughput synthesis and characterization of anodic oxides on Nb-Ti alloys. Electrochim. Acta 54, 5973 (2009).

    Article  CAS  Google Scholar 

  35. A.I. Mardare, A. Ludwig, A. Savan, A.D. Wieck, and A.W. Hassel: Combinatorial investigation of Hf-Ta thin films and their anodic oxides. Electrochim. Acta 55, 7884 (2010).

    Article  CAS  Google Scholar 

  36. R.T. Atanasoski, S-M. Huang, O. Albani, and R.A. Orani: A dry redox couple employed as the reference material in work function and corrosion potential measurements by the Kelvin technique. Corros. Sci. 36, 1513 (1994).

    Article  CAS  Google Scholar 

  37. W.N. Hansen and G.J. Hansen: Standard reference surfaces for work function measurements in air. Surf. Sci. 481, 172 (2001).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge assistance in XPS measurements by Jiri Duchoslav (ZONA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Walter Hassel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgstaller, W., Hafner, M., Voith, M. et al. Copper–nickel oxide thin film library reactively co-sputtered from a metallic sectioned cathode. Journal of Materials Research 29, 148–157 (2014). https://doi.org/10.1557/jmr.2013.336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.336

Navigation