Skip to main content
Log in

Metal oxide nanowire chemical and biochemical sensors

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The fabrication methods and the basic properties of the metal-oxide nanostructures referred as nanowires are presented and reviewed in this paper, with particular emphasis to the electrical and optical properties and their useful implementation for chemical and biochemical sensing. The field of chemical sensors has benefited by the wealth of highly crystalline nanostructures produced by physical and chemical methods. Large variation in bulk electrical conductivity, structural stability upon high temperature operation, high degree of crystalline ordering, large impact of point defects and surface states have unveiled the potential for the sensing field and have opened up new perspectives of application and for the realization of novel device architectures. This paper will summarize various techniques for preparation and characterization; then, the growth mechanisms and working principles will be discussed. Finally, the challenges that this field is currently facing are presented to signify the perspectives of expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE II.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.
FIG. 14.
FIG. 15.

Similar content being viewed by others

References

  1. J.L.G. Fierro: Metal Oxides: Chemistry and Applications (CRC Press, Florida, 2006).

    Google Scholar 

  2. V.E. Henrich and P.A. Cox: The Surface Chemistry of Metal Oxides (Cambridge University Press, Cambridge, UK, 1994).

    Google Scholar 

  3. C. Noguera: Physics and Chemistry at Oxide Surfaces (Cambridge University Press, Cambridge, UK, 1996).

    Book  Google Scholar 

  4. A.R. José and F-G. Marcos: Synthesis, Properties, and Applications of Oxide Nanomaterials (Wiley, New Jersey, 2007).

    Google Scholar 

  5. Metal-oxide Semiconductor Integrated Circuits (Microelectronics series) (Van Nost. Reinhold, New York, 1972).

  6. S.J. Jeong, J.S. Song, B.K. Min, W.J. Lee, and E.C. Park: Characteristics of piezoelectric multilayer devices containing metal-oxide multicomponent electrode. Ferroelectrics 338, 9–16 (2006).

    Article  CAS  Google Scholar 

  7. A.L.M. Reddy, S.R. Gowda, M.M. Shaijumon, and P.M. Ajayan: Hybrid nanostructures for energy storage applications. Adv. Mater. 24(37), 5045 (2012).

    Article  CAS  Google Scholar 

  8. A. Kolmakov and M. Moskovits: Chemical sensing and catalysis by one-dimensional nanostructres. Ann. Rev. Mater. Res. 34, 151–180 (2004).

    Article  CAS  Google Scholar 

  9. E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri: Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 54, 1–67 (2009).

    Article  CAS  Google Scholar 

  10. G. Korotcenkov: Chemical Sensors, Vol. 1–6 (Momentum Press, New York, 2010).

  11. J. Janata and J. Janata: Principles of Chemical Sensors (Springer-Verlag, Heidelberg, Germany, 2010).

    Google Scholar 

  12. Z.L. Wang: Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater. 12, 1295–1298 (2000).

    Article  CAS  Google Scholar 

  13. G.R. Patzke, F. Krumeich, and R. Nesper: Oxidic nanotubes and nanorods - anisotropic modules for a future nanotechnology. Angew. Chem. Int. Ed. 41, 2446–2461 (2002).

    Article  CAS  Google Scholar 

  14. M.A. Carpenter, S. Mathur, and A. Kolmakov: Metal Oxide Nanomaterials for Chemical Sensors (Springer, New York, 2012).

    Google Scholar 

  15. A. Kolmakov: The effect of morphology and surface doping on sensitization of quasi-1D metal oxide nanowire gas sensors. In Proceedings of SPIE, Vol. 6370, 2006; pp. 63700X1–63700X8.

    Article  Google Scholar 

  16. M. Law, K. Hannes, B. Messer, F. Kim, and P. Yang: Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed. 41, 2405–2408 (2002).

    Article  CAS  Google Scholar 

  17. A. Marcu, L. Trupina, R. Zamani, J. Arbiol, C. Grigoriu, and J.R. Morante: Catalyst size limitation in vapor-liquid-solid ZnO nanowire growth using pulsed laser deposition. Thin Solid Films 520(14), 4626 (2012).

    Article  CAS  Google Scholar 

  18. A. Gupta, B.C. Kim, E. Edwards, C. Brantley, and P. Ruffin: Covalent functionalization of zinc oxide nanowires for high sensitivity p-nitrophenol detection in biological systems. Mater. Sci. Eng., B 177(18), 1583 (2012).

    Article  CAS  Google Scholar 

  19. Y. Wu, W. Wu, X.M. Zou, L. Xu, and J.C. Li: Double 3-fold-symmetry novel ZnO hierarchical nanostructure arrays: Synthesis, characterization, and photoluminescence properties. Mater. Lett. 86, 182 (2012).

    Article  CAS  Google Scholar 

  20. M.H. Yao, P. Hu, Y.B. Cao, W.C. Xiang, X. Zhang, F.L. Yuan, and Y.F. Chen: Morphology-controlled ZnO spherical nanobelt-flower arrays and their sensing properties. Sens. Actuators, B 177, 562 (2013).

    Article  CAS  Google Scholar 

  21. N.M. Kiasari, S. Soltanian, B. Gholamkhass, and P. Servati: Room temperature ultra-sensitive resistive humidity sensor based on single zinc oxide nanowire. Sens. Actuators, A 182, 101 (2012).

    Article  CAS  Google Scholar 

  22. C.W. Na, H.S. Woo, I.D. Kim, and J.H. Lee: Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem. Commun. 47(18), 5148 (2011).

    Article  CAS  Google Scholar 

  23. S.S. Kim, S.W. Choi, H.G. Na, D.S. Kwak, Y.J. Kwon, and H.W. Kim: ZnO-SnO2 branch-stem nanowires based on a two-step process: Synthesis and sensing capability. Curr. Appl. Phys. 13(3), 526 (2013).

    Article  Google Scholar 

  24. E.R. Waclawik, J. Chang, A. Ponzoni, I. Concina, D. Zappa, E. Comini, N. Motta, G. Faglia, and G. Sberveglieri: Functionalised zinc oxide nanowire gas sensors: Enhanced NO2 gas sensor response by chemical modification of nanowire surfaces. Beilstein J. Nanotechnol. 3, 368 (2012).

    Article  CAS  Google Scholar 

  25. O. Lupan, G.A. Emelchenko, V.V. Ursaki, G. Chai, A.N. Redkin, A.N. Gruzintsev, I.M. Tiginyanu, L. Chow, L.K. Ono, B.R. Cuenya, H. Heinrich, and E.E. Yakimov: Synthesis and characterization of ZnO nanowires for nanosensor applications. Mater. Res. Bull. 45(8), 1026 (2010).

    Article  CAS  Google Scholar 

  26. D. Calestani, M.Z. Zha, L. Zanotti, M. Villani, and A. Zappettini: Low temperature thermal evaporation growth of aligned ZnO nanorods on ZnO film: A growth mechanism promoted by Zn nanoclusters on polar surfaces. Cryst. Eng. Commun. 13(5), 1707 (2011).

    Article  CAS  Google Scholar 

  27. H.S. Woo, C. Na, I.D. Kim, and J.H. Lee: Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO-Cr2O3 hetero-nanostructures. Nanotechnology 23(24), 245501 (2012).

    Article  CAS  Google Scholar 

  28. P. Hu, N. Han, D.W. Zhang, J.C. Ho, and Y.F. Chen: Highly formaldehyde-sensitive, transition-metal doped ZnO nanorods prepared by plasma-enhanced chemical vapor deposition. Sens. Actuators, B 169, 74 (2012).

    Article  CAS  Google Scholar 

  29. L.C. Campos, M.H.D. Guimaraes, A.M.B. Goncalves, S. de Oliveira, and R.G. Lacerda: ZnO UV photodetector with controllable quality factor and photosensitivity. AIP Adv. 3(2), 022104 (2013).

    Article  CAS  Google Scholar 

  30. M. Tonezzer and R.G. Lacerda: Integrated zinc oxide nanowires/carbon microfiber gas sensors. Sens. Actuators, B 150(2), 517 (2010).

    Article  CAS  Google Scholar 

  31. N. Le Hung, E. Ahn, S. Park, H. Jung, H. Kim, S.K. Hong, D. Kim, and C. Hwang: Synthesis and hydrogen gas sensing properties of ZnO wirelike thin films. J. Vac. Sci. Technol., A 27(6), 1347 (2009).

    Article  CAS  Google Scholar 

  32. M. Tonezzer and R.G. Lacerda: Zinc oxide nanowires on carbon microfiber as flexible gas sensor. Physica E 44(6), 1098 (2012).

    Article  CAS  Google Scholar 

  33. A. Baranowska-Korczyc, K. Fronc, L. Klopotowski, A. Reszka, K. Sobczak, W. Paszkowicz, K. Dybko, P. Dluzewski, B.J. Kowalski, and D. Elbaum: Light- and environment-sensitive electrospun ZnO nanofibers. RSC Adv. 3(16), 5656 (2013).

    Article  CAS  Google Scholar 

  34. L. Li, F. Yang, J. Yu, X.W. Wang, L.N. Zhang, Y. Chen, and H.Q. Yang: In situ growth of ZnO nanowires on Zn comb-shaped interdigitating electrodes and their photosensitive and gas-sensing characteristics. Mater. Res. Bull. 47(12), 3971 (2012).

    Article  CAS  Google Scholar 

  35. A. Qurashi, M. Faiz, N. Tabet, and M.W. Alam: Low temperature synthesis of hexagonal ZnO nanorods and their hydrogen sensing properties. Superlattice Microstruct. 50(2), 173 (2011).

    Article  CAS  Google Scholar 

  36. M.A. Lim, Y.W. Lee, S.W. Han, and I. Park: Novel fabrication method of diverse one-dimensional Pt/ZnO hybrid nanostructures and its sensor application. Nanotechnology 22(3), 035601 (2011).

    Article  CAS  Google Scholar 

  37. P.K. Guha, S. Santra, J.A. Covington, F. Udrea, and J.W. Gardner: Zinc oxide nanowire based hydrogen sensor on SOI CMOS platform. Proc. Eng. 25, 1473–1476 (2011).

    Article  CAS  Google Scholar 

  38. Z.H. Lim, Z.X. Chia, M. Kevin, A.S.W. Wong, and G.W. Ho: A facile approach towards ZnO nanorods conductive textile for room temperature multifunctional sensors. Sens. Actuators, B 151(1), 121 (2010).

    Article  CAS  Google Scholar 

  39. W.D. Wang, Z. Zhang, Q.L. Liao, T. Yu, Y.W. Shen, P.F. Li, Y.H. Huang, and Y. Zhang: Two-step epitaxial synthesis and layered growth mechanism of bisectional ZnO nanowire arrays. J. Cryst. Growth 363, 247 (2013).

    Article  CAS  Google Scholar 

  40. G.J. Sun, S.W. Choi, S.H. Jung, A. Katoch, and S.S. Kim: V-groove SnO2 nanowire sensors: Fabrication and Pt-nanoparticle decoration. Nanotechnology 24(2), 025504 (2013).

    Article  CAS  Google Scholar 

  41. Y.H. Lin, Y.C. Hsueh, P.S. Lee, C.C. Wang, J.M. Wu, T.P. Perng, and H.C. Shih: Fabrication of tin dioxide nanowires with ultrahigh gas sensitivity by atomic layer deposition of platinum. J. Mater. Chem. 21(28), 10552 (2011).

    Article  CAS  Google Scholar 

  42. M. Tonezzer and N.V. Hieu: Size-dependent response of single-nanowire gas sensors. Sens. Actuators, B 163(1), 146 (2012).

    Article  CAS  Google Scholar 

  43. F. Shao, M.W.G. Hoffmann, J.D. Prades, J.R. Morante, N. Lopez, and F. Hernandez-Ramirez: Interaction mechanisms of ammonia and tin oxide: A combined analysis using single nanowire devices and DFT calculations. J. Phys. Chem. C 117, 3520–3526 (2013).

    Article  CAS  Google Scholar 

  44. V.V. Sysoev, E. Strelcov, S. Kar, and A. Kolmakov: The electrical characterization of a multi-electrode odor detection sensor array based on the single SnO2 nanowire. Thin Solid Films 520(3), 898 (2011).

    Article  CAS  Google Scholar 

  45. S.W. Choi, S.H. Jung, and S.S. Kim: Significant enhancement of the NO2 sensing capability in networked SnO2 nanowires by Au nanoparticles synthesized via gamma-ray radiolysis. J. Hazard. Mater. 193, 243 (2011).

    Article  CAS  Google Scholar 

  46. N.M. Shaalan, T. Yamazaki, and T. Kikuta: Synthesis of metal and metal oxide nanostructures and their application for gas sensing. Mater. Chem. Phys. 127(1–2), 143 (2011).

    Article  CAS  Google Scholar 

  47. F. Ramirez-Hernandez, J.D. Prades, A. Hackner, T. Fischer, G. Muller, S. Mathur, and J.R. Morante: Miniaturized ionization gas sensors from single metal oxide nanowires. Nanoscale 3, 630–634 (2011).

    Article  Google Scholar 

  48. E.N. Dattoli, A.V. Davydov, and K.D. Benkstein: Tin oxide nanowire sensor with integrated temperature and gate control for multi-gas recognition. Nanoscale 4(5), 1760 (2012).

    Article  CAS  Google Scholar 

  49. X.P. Li, Z.Y. Gu, J.H. Cho, H.W. Sun, and P. Kurup: Tin-copper mixed metal oxide nanowires: Synthesis and sensor response to chemical vapors. Sens. Actuators, B 158(1), 199 (2011).

    Article  CAS  Google Scholar 

  50. L. Liu, C.C. Guo, S.C. Li, L.Y. Wang, Q.Y. Dong, and W. Li: Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sens. Actuators, B 150(2), 806 (2010).

    Article  CAS  Google Scholar 

  51. H.N. Zhang, Z.Y. Li, L. Liu, X.R. Xu, Z.J. Wang, W. Wang, W. Zheng, B. Dong, and C. Wang: Enhancement of hydrogen monitoring properties based on Pd-SnO2 composite nanofibers. Sens. Actuators, B 147(1), 111 (2010).

    Article  CAS  Google Scholar 

  52. X.R. Xu, J.H. Sun, H.N. Zhang, Z.J. Wang, B. Dong, T.T. Jiang, W. Wang, Z.Y. Li, and C. Wang: Effects of Al doping on SnO2 nanofibers in hydrogen sensor. Sens. Actuators, B 160(1), 858 (2011).

    Article  CAS  Google Scholar 

  53. Z.J. Wang, Z.Y. Li, J.H. Sun, H.N. Zhang, W. Wang, W. Zheng, and C. Wang: Improved hydrogen monitoring properties based on p-NiO/n-SnO2 heterojunction composite nanofibers. J. Phys. Chem. C 114(13), 6100 (2010).

    Article  CAS  Google Scholar 

  54. X.B. Zhao, Z.W. Pang, M.Z. Wu, X.S. Liu, H. Zhang, Y.Q. Ma, Z.Q. Sun, L.D. Zhang, and X.S. Chen: Magnetic field-assisted synthesis of wire-like Co3O4 nanostructures: Electrochemical and photocatalytic studies. Mater. Res. Bull. 48(1), 92 (2013).

    Article  CAS  Google Scholar 

  55. N. Singh, A. Ponzoni, E. Comini, and P.S. Lee: Chemical sensing investigations on Zn-In2O3 nanowires. Sens. Actuators, B 171, 244 (2012).

    Article  CAS  Google Scholar 

  56. N. Singh, R.K. Gupta, and P.S. Lee: Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. ACS Appl. Mater. Interfaces 3(7), 2246 (2011).

    Article  CAS  Google Scholar 

  57. A. Qurashi, E.M. El-Maghraby, T. Yamazaki, and T. Kikuta: Catalyst supported growth of In2O3 nanostructures and their hydrogen gas sensing properties. Sens. Actuators, B 147(1), 48 (2010).

    Article  CAS  Google Scholar 

  58. T. Lim, S. Lee, M. Meyyappan, and S. Ju: Control of semiconducting and metallic indium oxide nanowires. ACS Nano 5(5), 3917 (2011).

    Article  CAS  Google Scholar 

  59. Z. Wang, Y.M. Hu, W. Wang, X. Zhang, B.X. Wang, H.Y. Tian, Y. Wang, J.G. Guan, and H.S. Gu: Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature. Int. J. Hydrogen Energy 37(5), 4526 (2012).

    Article  CAS  Google Scholar 

  60. X.S. Fang, L.F. Hu, K.F. Huo, B. Gao, L.J. Zhao, M.Y. Liao, P.K. Chu, Y. Bando, and D. Golberg: New ultraviolet photodetector based on individual Nb2O5 nanobelts. Adv. Funct. Mater. 21(20), 3907 (2011).

    Article  CAS  Google Scholar 

  61. D. Meng, N.M. Shaalan, T. Yamazaki, and T. Kikuta: Preparation of tungsten oxide nanowires and their application to NO2 sensing. Sens. Actuators, B 169, 113 (2012).

    Article  CAS  Google Scholar 

  62. L.F. Zhu, J.C. She, J.Y. Luo, S.Z. Deng, J. Chen, X.W. Ji, and N.S. Xu: Self-heated hydrogen gas sensors based on Pt-coated W18O49 nanowire networks with high sensitivity, good selectivity and low power consumption. Sens. Actuators, B 153(2), 354 (2011).

    Article  CAS  Google Scholar 

  63. N.D. Hoa and S.A. El-Safty: Gas nanosensor design packages based on tungsten oxide: Mesocages, hollow spheres, and nanowires. Nanotechnology 22(48), 485503 (2011).

    Article  CAS  Google Scholar 

  64. Y.X. Qin, W.J. Shen, X. Li, and M. Hu: Effect of annealing on microstructure and NO2-sensing properties of tungsten oxide nanowires synthesized by solvothermal method. Sens. Actuators, B 155(2), 646 (2011).

    Article  CAS  Google Scholar 

  65. R. Mema, L. Yuan, Q.T. Du, Y.Q. Wang, and G.W. Zhou: Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem. Phys. Lett. 512(1–3), 87 (2011).

    Article  CAS  Google Scholar 

  66. S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.J. Young, S.C. Hung, and B.R. Huang: CuO nanowire-based humidity sensor. IEEE Sens. J. 12(6), 1884–1888 (2012).

    Article  CAS  Google Scholar 

  67. D. Zappa, E. Comini, R. Zamani, J. Arbiol, J.R. Morante, and G. Sberveglieri: Preparation and integration of copper oxide nanowires in sensing devices. Sens. Actuators, B 182, 7–15 (2012).

    Article  CAS  Google Scholar 

  68. M. Kevin, W.L. Ong, G.H. Lee, and G.W. Ho: Formation of hybrid structures: Copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Nanotechnology 22(23), 235701 (2011).

    Article  CAS  Google Scholar 

  69. J. Shi, C. Sun, M.B. Starr, and X. Wang: Growth of titanium dioxide nanorods in 3D-confined spaces. Nano Lett. 11(2), 624 (2011).

    Article  CAS  Google Scholar 

  70. X.H. Feng, X.P. Huang, and X.W. Wang: Thermal conductivity and secondary porosity of single anatase TiO2 nanowire. Nanotechnology 23(18), 185701 (2012).

    Article  CAS  Google Scholar 

  71. D.L. Wang, A.T. Chen, and A.K.Y. Jen: Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection. Phys. Chem. Chem. Phys. 15(14), 5017 (2013).

    Article  CAS  Google Scholar 

  72. K.W. Urban: The new paradigm of transmission microscopy. MRS Bull. 32(11), 946–952 (2007).

    Article  CAS  Google Scholar 

  73. K. Urban: Is science prepared for atomic-resolution electron microscopy. Nat. Mater. 8, 260–262 (2009).

    Article  CAS  Google Scholar 

  74. J.M. Thomas and P.A. Midgley: The modern electron microscope: A cornucopia of chemico-physical insights. Chem. Phys. 385(1–3), 1–10 (2011).

    Article  CAS  Google Scholar 

  75. C-L. Jia, S-B. Mi, K. Urban, I. Vrejoiu, M. Alexe, and D. Hesse: Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7(1), 57 (2008).

    Article  CAS  Google Scholar 

  76. D.A. Muller: Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8(4), 263–270 (2009).

    Article  CAS  Google Scholar 

  77. P.A. Midgley and R.E. Dunin-Borkowski: Electron tomography and holography in materials science. Nat. Mater. 8(4), 271–280 (2009).

    Article  CAS  Google Scholar 

  78. D. Wolf: Electron holographic tomography for mapping the three-dimensional distribution of electrostatic potential in III-V semiconductor nanowires. Appl. Phys. Lett. 98(26), 264103–264103–3 (2011).

    Article  CAS  Google Scholar 

  79. M. Verheijen, R. Algra, and M. Borgström: Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography. Nano Lett. 7, 3051–3055 (2007).

    Article  CAS  Google Scholar 

  80. J.Y. Huang: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010), 1515–1520 (2010).

    Article  CAS  Google Scholar 

  81. D.E. Perea: Three-dimensional nanoscale composition mapping of semiconductor nanowires. Nano Lett. 6(2), 181–185 (2006).

    Article  CAS  Google Scholar 

  82. Q. Ahsanulhaq, J.H. Kim, J.S. Lee, and Y.B. Hahn: Electrical and gas sensing properties of ZnO nanorod arrays directly grown on a four-probe electrode system. Electrochem. Commun. 12(3), 475 (2010).

    Article  CAS  Google Scholar 

  83. Z.H. Ibupoto, K. Khun, and M. Willander: A selective iodide ion sensor electrode based on functionalized ZnO nanotubes. Sensors 13(2), 1984 (2013).

    Article  CAS  Google Scholar 

  84. O. Lupan, L. Chow, T. Pauporte, L.K. Ono, B.R. Cuenya, and G. Chai: Highly sensitive and selective hydrogen single-nanowire nanosensor. Sens. Actuators, B 173, 772 (2012).

    Article  CAS  Google Scholar 

  85. A.E. Gad, M.W.G. Hoffmann, F. Hernandez-Ramirez, J.D. Prades, H. Shen, and S. Mathur: Coaxial p-Si/n-ZnO nanowire heterostructures for energy and sensing applications. Mater. Chem. Phys. 135(2–3), 618 (2012).

    Article  CAS  Google Scholar 

  86. M.J. Madou and S.R. Morrison: Chemical Sensing with Solid State Devices (Academic Press Inc., Boston, MA, 1989).

    Google Scholar 

  87. L. Kronik and Y. Shapira: Surface photovoltage phenomena: Theory, experiment, and applications. Surf. Sci. Rep. 37(1–5), 1 (1999).

    Article  CAS  Google Scholar 

  88. N. Tsuda, K. Nasu, and A. Fujimori: Electronic Conduction in Oxides, 2nd ed. (Springer, Berlin, Germany, 2000).

    Book  Google Scholar 

  89. S. Samson and C.G. Fonstad: Defect structure and electronic donor levels in stannic oxide crystal. J. Appl. Phys. 44, 4618 (1973).

    Article  CAS  Google Scholar 

  90. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z.L. Wang: Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869–1871 (2002).

    Article  CAS  Google Scholar 

  91. N. Barsan and U. Weimar: Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001).

    Article  CAS  Google Scholar 

  92. G. Korotcenkov, V. Brinzari, M. Ivanov, A. Cerneavschi, J. Rodriguez, A. Cirera, A. Cornet, and J. Morante: Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Films 479, 38–51 (2005).

    Article  CAS  Google Scholar 

  93. S.J. Ippolito, A. Ponzoni, K. Kalantar-Zadeh, W. Wlodarski, E. Comini, G. Faglia, and G. Sberveglieri: Layered WO3/ZnO/36° LiTaO3 SAW gas sensor sensitive towards ethanol vapour and humidity. Sens. Actuators, B 117, 442–450 (2006).

    Article  CAS  Google Scholar 

  94. M.C. Carotta, M. Ferroni, V. Guidi, and G. Martinelli: preparation and characterization of nanostructured titania thick films. Adv. Mater. 11, 943–946 (1999).

    Article  CAS  Google Scholar 

  95. J.W. Orton and M.J. Powell: The hall effect in polycrystalline and powdered semiconductors. Rep. Prog. Phys. 43, 1263–1307 (1980).

    Article  Google Scholar 

  96. A. Ponzoni, E. Comini, I. Concina, M. Ferroni, M. Falasconi, E. Gobbi, V. Sberveglieri, and G. Sberveglieri: Nanostructured metal oxide gas sensors, a survey of applications carried out at sensor lab, Brescia (Italy) in the security and food quality fields. Sensors 12, 17023–17045 (2012).

    Article  CAS  Google Scholar 

  97. D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, and C. Zhou: Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919–1924 (2004).

    Article  CAS  Google Scholar 

  98. A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S.Z. Deng, N.S. Xu, Y. Ding, and Z.L. Wang: Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl. Phys. Lett. 88, 203101 (2006).

    Article  CAS  Google Scholar 

  99. Y.G. Choi, G. Sakai, K. Shimanoe, and N. Yamazoe: Wet process-based fabrication of WO3 thin film for NO2 detection. Sens. Actuators, B 101, 107–111 (2004).

    Article  CAS  Google Scholar 

  100. C.N. Xu, J. Tamaki, N. Miura, and N. Yamazoe: Nature of sensitivity promotion in Pd-loaded SnO2 gas sensor. J. Electrochem. Soc. 143, L148–L150 (1996).

    Article  CAS  Google Scholar 

  101. S.S. Kim, J.Y. Park, S.W. Choi, H.G. Na, J.C. Yang, and H.W. Kim: Enhanced NO2 sensing characteristics of Pd-functionalized networked In2O3 nanowires. J. Alloys Compd. 509, 9171–9177 (2011).

    Article  CAS  Google Scholar 

  102. N.M. Shaalan, T. Yamazaki, and T. Kikuta: NO2 response enhancement and anomalous behavior of n-type SnO2 nanowires functionalized by Pd nanodots. Sens. Actuators, B 166–167, 671–677 (2012).

    Article  CAS  Google Scholar 

  103. R.K. Joshi, Q. Hu, F. Alvi, N. Joshi, and A. Kumar: Au decorated zinc oxide nanowires for CO sensing. J. Phys. Chem. C 113, 16199–16202 (2009).

    Article  CAS  Google Scholar 

  104. M. Mashock, K. Yu, S. Cui, S. Mao, G. Lu, and J. Chen: Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p-n junctions on their surfaces. ACS Appl. Mater. Interfaces 4, 4192–4199 (2012).

    Article  CAS  Google Scholar 

  105. C. Lao, Y. Li, C.P. Wong, and Z.L. Wang: Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization. Nano Lett. 7, 1323–1328 (2007).

    Article  CAS  Google Scholar 

  106. A.P. Lee and B.J. Reed: Temperature modulation in semiconductor gas sensing. Sens. Actuators, B 60, 35–42 (1999).

    Article  CAS  Google Scholar 

  107. A. Ponzoni, A. Depari, E. Comini, G. Faglia, A. Flammini, and G. Sberveglieri: Exploitation of a low-cost electronic system, designed for low-conductance and wide-range measurements, to control metal oxide gas sensors with temperature profile protocols. Sens. Actuators, B 175, 149–156 (2012).

    Article  CAS  Google Scholar 

  108. F. Roeck, N. Barsan, and U. Weimar: Electronic nose: Current status and future trends. Chem. Rev. 108, 705–725 (2008).

    Article  CAS  Google Scholar 

  109. R. Gutierrez-Osuna: Pattern analysis for machine olfaction: A review. IEEE Sens. J. 2, 189–202 (2002).

    Article  Google Scholar 

  110. A. Ponzoni, C. Baratto, S. Bianchi, E. Comini, M. Ferroni, M. Pardo, M. Vezzoli, A. Vomiero, G. Faglia, and G. Sberveglieri: Metal oxide nanowire and thin-film-based gas sensors for chemical warfare simulants detection. IEEE Sens. J. 8, 735–742 (2008).

    Article  CAS  Google Scholar 

  111. P.C. Chen, F.N. Ishikawa, H.K. Chang, K. Ryu, and C. Zhou: A nanoelectronic nose: A hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination. Nanotechnology 20, 125503 (2009).

    Article  CAS  Google Scholar 

  112. V.V. Sysoev, J. Goschnick, T. Schneider, E. Strelcov, and A. Kolmakov: A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett. 7, 3182–3188 (2007).

    Article  CAS  Google Scholar 

  113. E. Strelcov, S. Dmitriev, B. Button, J. Cothren, V. Sysoev, and A. Kolmakov: Evidence of self-heating effect on surface reactivity and gas sensing of metal oxide nanowire chemiresistors. Nanotechnology 19, 355502 (2008).

    Article  CAS  Google Scholar 

  114. J.D. Prades, F. Hernández-Ramírez, T. Fischer, M. Hoffmann, R. Müller, N. López, S. Mathur, and J.R. Morante: Quantitative analysis of co-humidity gas mixtures with self-heated nanowires operated in pulsed mode. Appl. Phys. Lett. 97, 243105 (2010).

    Article  CAS  Google Scholar 

  115. V.V. Sysoev, T. Schneider, J. Goschnick, I. Kiselev, W. Habicht, H. Hahn, E. Strelcov, and A. Kolmakov: Percolating SnO2 nanowire network as a stable gas sensor: Direct comparison of long-term performance versus SnO2 nanoparticle films. Sens. Actuators, B 139, 699–703 (2009).

    Article  CAS  Google Scholar 

  116. L. Cao, S.R. Segal, S.L. Suib, X. Tang, and S. Satyapal: Thermocatalytic oxidation of dimethyl methylphosphonate on supported metal oxides. J. Catal. 194, 61–70 (2000).

    Article  CAS  Google Scholar 

  117. E. Comini, C. Baratto, I. Concina, G. Faglia, M. Falasconi, M. Ferroni, V. Galstyan, E. Gobbi, A. Ponzoni, A. Vomiero, D. Zappa, V. Sberveglieri, and G. Sberveglieri: Metal oxide nanoscience and nanotechnology for chemical sensors. Sens. Actuators, B 179, 3–20 (2013).

    Article  CAS  Google Scholar 

  118. Y. Sun and K.Y. Ong: Detection Technologies for Chemical Warfare Agents and Toxic Vapors (CRC Press, Boca Raton, FL, 2005).

    Google Scholar 

  119. G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, M. Pardo, A. Ponzoni, and A. Vomiero: Semiconducting tin oxide nanowires and thin films for chemical warfare agents detection. Thin Solid Films 517, 6156–6160 (2009).

    Article  CAS  Google Scholar 

  120. E. Horvath, P.R. Ribic, F. Hashemi, L. Forro, and A. Magrez: Dye metachromasy on titanate nanowires: Sensing humidity with reversible molecular dimerization. J. Mater. Chem. 22, 8778 (2012).

    Article  CAS  Google Scholar 

  121. A. Setaro, A. Bismuto, S. Lettieri, P. Maddalena, E. Comini, S. Bianchi, C. Baratto, and G. Sberveglieri: Optical sensing of NO2 in tin oxide nanowires at sub-ppm level. Sens. Actuators, B 130, 391–395 (2008).

    Article  CAS  Google Scholar 

  122. G. Faglia, C. Baratto, G. Sberveglieri, M. Zha, and A. Zappettini: Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts. Appl. Phys. Lett. 86, 011923 (2005).

    Article  CAS  Google Scholar 

  123. A.B. Djurišić, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M. Kwok, and D.L. Phillips: Defect emissions in ZnO nanostructures. Nanotechnology 18, 095702 (2007).

    Article  CAS  Google Scholar 

  124. S. Lettieri, A. Bismuto, P. Maddalena, C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, and L. Zanotti: Gas sensitive light emission properties of tin oxide and zinc oxide nanobelts. J. Non-Cryst. Solids 352, 1457–1460 (2006).

    Article  CAS  Google Scholar 

  125. C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena: Luminescence response of ZnO nanowires to gas adsorption. Sens. Actuators, B 140, 461–466 (2009).

    Article  CAS  Google Scholar 

  126. D. Valerini, A. Cretì, A.P. Caricato, M. Lomascolo, R. Rella, and M. Martino: Optical gas sensing through nanostructured ZnO films with different morphologies. Sens. Actuators, B 145, 167–173 (2010).

    Article  CAS  Google Scholar 

  127. S. Lettieri, A. Setaro, C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, and P. Maddalena: On the mechanism of photoluminescence quenching in tin dioxide nanowires by NO2 adsorption. New J. Phys. 10, 043013 (2008).

    Article  CAS  Google Scholar 

  128. Y. Liu, Y. Zhang, H. Lei, J. Song, H. Chen, and B. Li: Evolution of well-arrayed ZnO nanorods on thinned silica fibers and application for humidity sensing. Opt. Express 20, 19404–19411 (2012).

    Article  CAS  Google Scholar 

  129. M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis: An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating. Opt. Express 20, 8472–8484 (2012).

    Article  CAS  Google Scholar 

  130. M. Nakagawa and N. Yamashita: Cataluminescence-based gas sensors. In Springer Series on Chemical Sensors and Biosensors, edited by Guillermo Orellana - Maria C. Moreno Bondi. Vol. 3, Springer-Verlag, Berlin Heidelberg, 2005; pp. 93–132.

    Article  CAS  Google Scholar 

  131. C. Yu, G. Liu, B. Zuo, Y. Tang, and T. Zhang: A novel gaseous pinacolyl alcohol sensor utilizing cataluminescence on alumina nanowires prepared by supercritical fluid drying. Anal. Chim. Acta 618, 204–209 (2008).

    Article  CAS  Google Scholar 

  132. F. Teng, Y. Zhu, G. He, G. Gao, and D.D. Meng: Cataluminescence and catalysis properties of CO oxidation over porous network of ZrO2 nanorods synthesized by a bio-template. Open Catal. J. 2, 86–91 (2009).

    Article  CAS  Google Scholar 

  133. J. Hahm and C.M. Lieber: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4(1), 51 (2004).

    Article  CAS  Google Scholar 

  134. F. Patolsky and C.M. Lieber: Nanowire nanosensors. Mater. Today 8, 20 (2005).

    Article  CAS  Google Scholar 

  135. Y. Cui, Q.Q. Wei, H.K. Park, and C.M. Lieber: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289 (2001).

    Article  CAS  Google Scholar 

  136. W.U. Wang, C. Chen, K.H. Lin, Y. Fang, and C.M. Lieber: Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208 (2005).

    Article  CAS  Google Scholar 

  137. F. Patolsky, G.F. Zheng, O. Hayden, M. Lakadamyali, X.W. Zhuang, and C.M. Lieber: Electrical detection of single viruses. Proc. Natl. Acad. Sci. U.S.A. 101(39), 14017 (2004).

    Article  CAS  Google Scholar 

  138. E. Stern, R. Wagner, F.J. Sigworth, R. Breaker, T.M. Fahmy, and M.A. Reed: Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett. 7(11), 3405 (2007).

    Article  CAS  Google Scholar 

  139. A. Poghossian, A. Cherstvy, S. Ingebrandt, A. Offenhausser, and M.J. Schoning: Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sens. Actuators, B 111, 470 (2005).

    Article  CAS  Google Scholar 

  140. G.J. Zhang, G. Zhang, J.H. Chua, R.E. Chee, E.H. Wong, A. Agarwal, K.D. Buddharaju, N. Singh, Z.Q. Gao, and N. Balasubramanian: DNA sensing by silicon nanowire: Charge layer distance dependence. Nano Lett. 8(4), 1066 (2008).

    Article  CAS  Google Scholar 

  141. Y.L. Bunimovich, Y.S. Shin, W.S. Yeo, M. Amori, G. Kwong, and J.R. Heath: Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 128(50), 16323 (2006).

    Article  CAS  Google Scholar 

  142. G.F. Zheng, F. Patolsky, Y. Cui, W.U. Wang, and C.M. Lieber: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294 (2005).

    Article  CAS  Google Scholar 

  143. E. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyrembak, D.B. Turner-Evans, A.D. Hamilton, D.A. LaVan, T.M. Fahmy, and M.A. Reed: Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519 (2007).

    Article  CAS  Google Scholar 

  144. C. Li, B. Lei, D.H. Zhang, X.L. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C.W. Zhou: Chemical gating of In2O3 nanowires by organic and biomolecules. Appl. Phys. Lett. 83(19), 4014 (2003).

    Article  CAS  Google Scholar 

  145. T. Tang, X.L. Liu, C. Li, B. Lei, D.H. Zhang, M. Rouhanizadeh, T. Hsiai, and C.W. Zhou: Complementary response of In2O3 nanowires and carbon nanotubes to low-density lipoprotein chemical gating. Appl. Phys. Lett. 86(10) (2005).

    Google Scholar 

  146. M. Curreli, C. Li, Y.H. Sun, B. Lei, M.A. Gundersen, M.E. Thompson, and C.W. Zhou: Selective functionalization of In2O3 nanowire mat devices for biosensing applications. J. Am. Chem. Soc. 127(19), 6922 (2005).

    Article  CAS  Google Scholar 

  147. M. Stutzmann, J.A. Garrido, M. Eickhoff, and M.S. Brandt: Direct biofunctionalization of semiconductors: A survey. Phys. Status Solidi A 203(14), 3424 (2006).

    Article  CAS  Google Scholar 

  148. J. Zhou, N.S. Xu, and Z.L. Wang: Dissolving behavior and stability of ZnO wires in biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures. Adv. Mater. 18(18), 2432 (2006).

    Article  CAS  Google Scholar 

  149. Z. Li, R.S. Yang, M. Yu, F. Bai, C. Li, and Z.L. Wang: Cellular level biocompatibility and biosafety of ZnO nanowires. J. Phys. Chem. C 112(51), 20114 (2008).

    Article  CAS  Google Scholar 

  150. A. Choi, K. Kim, H-I. Jung, and S.Y. Lee: ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode. Sens. Actuators, B 148(2), 577 (2010).

    Article  CAS  Google Scholar 

  151. X. Liu, P. Lin, X. Yan, Z. Kang, Y. Zhao, Y. Lei, C. Li, H. Du, and Y. Zhang: Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acidibid. Sens. Actuators, B 176, 22 (2013).

    Article  CAS  Google Scholar 

  152. P.H. Yeh, Z. Li, and Z.L. Wang: Schottky-gated probe-free ZnO nanowire biosensor. Adv. Mater. 21(48), 4975 (2009).

    Article  CAS  Google Scholar 

  153. R.M. Yu, C.F. Pan, and Z.L. Wang: High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. Energy Environ. Sci. 6(2), 494 (2013).

    Article  CAS  Google Scholar 

  154. F.F. Zhang, X.L. Wang, S.Y. Ai, Z.D. Sun, Q. Wan, Z.Q. Zhu, Y.Z. Xian, L.T. Jin, and K. Yamamoto: Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta 519(2), 155 (2004).

    Article  CAS  Google Scholar 

  155. J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li, and Z.L. Dong: Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 88(23), 233106 (2006).

    Article  CAS  Google Scholar 

  156. A. Wei, X.W. Sun, J.X. Wang, Y. Lei, X.P. Cai, C.M. Li, Z.L. Dong, and W. Huang: Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition ibid. App. Phys. Lett. 89(12), 123902 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work has been supported by the Italian MIUR through the FIRB Project RBAP115AYN “Oxides at the nanoscale: multifunctionality and applications.” This work was partially supported by the European Community’s 7th Framework Programme, under the grant agreement NMP3-LA-2010-246334 and no. 247768, and the Russian Federation Government, under the State Contract no. 02.527.11.0008, within the collaborative Europe–Russia S3 project. Financial support of the European Commission is therefore gratefully acknowledged. Funding from the European Community’s 7th Framework Programme, under the grant agreement no. 295216 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Comini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comini, E., Baratto, C., Faglia, G. et al. Metal oxide nanowire chemical and biochemical sensors. Journal of Materials Research 28, 2911–2931 (2013). https://doi.org/10.1557/jmr.2013.304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.304

Navigation