Skip to main content

Advertisement

Log in

Recent advances on solar water splitting using hematite nanorod film produced by purpose-built material methods

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Photoelectrochemical cells offer a more elegant, clean, and sustainable way to store solar energy as chemical energy through the splitting of water into its primitive form (H2 and O2). Among many metal oxides pointed as candidates for this application, the fundamental characteristics of hematite (α-Fe2O3), such as abundance, excellent chemical stability in an aqueous environment, and favorable optical band gap, emerged as a promising photoanode. Although attractive, the poor optoelectronic properties necessitate a large application of overpotential for split water assisted by solar irradiation, limiting the high performance of this material. Since the electrode was built using materials in nanoscale, significant advances were achieved. This review highlights new insights and recent progress in the use of a purpose-built material process to build hematite electrodes for improving photocatalytic activity. In addition, reduction on the required overpotential by effective control-treatment of morphology and surface of vertically aligned hematite nanorods will be addressed. An interesting set of results were also discussed revisiting a novel strategy recently presented in the literature and complementary advances was illustrated. These latest efforts aid in pointing out the challenges or obstacles to be overcome using this morphology and in defining new opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

REFERENCES

  1. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972).

    Article  CAS  Google Scholar 

  2. A.J. Bard, G.M. Whitesides, R.N. Zare, and F.W. McLafferty: Holy grails of chemistry. Acc. Chem. Res. 28(3), 91 (1995).

    Article  CAS  Google Scholar 

  3. S.S. Mao, S. Shen, and L. Guo: Nanomaterials for renewable hydrogen production, storage and utilization. Prog. Nat. Sci. 22(6), 522 (2012).

    Article  Google Scholar 

  4. K. Sivula, F. Le Formal, and M. Grätzel: Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4(4), 432 (2011).

    Article  CAS  Google Scholar 

  5. Y. Tachibana, L. Vayssieres, and J.R. Durrant: Artificial photosynthesis for solar water-splitting. Nat. Photon. 6(8), 511 (2012).

    Article  CAS  Google Scholar 

  6. X. Liu, F. Wang, and Q. Wang: Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 14(22), 7894 (2012).

    Article  CAS  Google Scholar 

  7. S.H. Baeck, K.S. Choi, T.F. Jaramillo, G.D. Stucky, and E.W. McFarland: Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater. 15(15), 1269 (2003).

    Article  CAS  Google Scholar 

  8. R.H. Gonçalves, L.D.T. Leite, and E.R. Leite: Colloidal WO3 nanowires as a versatile route to prepare a photoanode for solar water splitting. ChemSusChem 5(12), 2341 (2012).

    Article  CAS  Google Scholar 

  9. X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. Gao, J. Chen, J. Zhou, and Z.L. Wang: Three-dimensional WO3 nanostructures on carbon paper: Photoelectrochemical property and visible light driven photocatalysis. Chem. Commun. 47(20), 5804 (2011).

    Article  CAS  Google Scholar 

  10. H. Wang, T. Deutsch, and J.A. Turner: Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155(5), F91 (2008).

    Article  CAS  Google Scholar 

  11. A.J. Cowan, J. Tang, W. Leng, J.R. Durrant, and D.R. Klug: Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J. Phys. Chem. C 114(9), 4208 (2010).

    Article  CAS  Google Scholar 

  12. M. Ni, M.K.H. Leung, D.Y.C. Leung, and K. Sumathy: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. J. Renewable Sustainable Energy 11(3), 401 (2007).

    Article  CAS  Google Scholar 

  13. B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, and J. Bisquert: Water oxidation at hematite photoelectrodes: The role of surface states. J. Am. Chem. Soc. 134(9), 4294 (2012).

    Article  CAS  Google Scholar 

  14. T.W. Hamann: Splitting water with rust: Hematite photoelectrochemistry. Dalton Trans. 41(26), 7830 (2012).

    Article  CAS  Google Scholar 

  15. A. Hagfeldt and M. Grätzel: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95(1), 49 (1995).

    Article  CAS  Google Scholar 

  16. J. Sun, D.K. Zhong, and D.R. Gamelin: Composite photoanodes for photoelectrochemical solar water splitting. Energy Environ. Sci. 3(9), 1252 (2010).

    Article  CAS  Google Scholar 

  17. R. van de Krol, Y. Liang, and J. Schoonman: Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18(20), 2311 (2008).

    Article  CAS  Google Scholar 

  18. M. Dinca, Y. Surendranath, and D.G. Nocera: Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl. Acad. Sci. U.S.A. 107(23), 10337 (2010).

    Article  CAS  Google Scholar 

  19. L. Andrade, T. Lopes, H.A. Ribeiro, and A. Mendes: Transient phenomenological modeling of photoelectrochemical cells for water splitting–application to undoped hematite electrodes. Int. J. Hydrogen Energy 36(1), 175 (2011).

    Article  CAS  Google Scholar 

  20. K. Maeda: Photocatalytic water splitting using semiconductor particles: History, and recent developments. J. Photochem. Photobiol., C 12(4), 237 (2011).

    Article  CAS  Google Scholar 

  21. Y. Li and J.Z. Zhang: Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photon. Rev. 4(4), 517 (2009).

    Article  CAS  Google Scholar 

  22. B.D. Alexander, P.J. Kulesza, I. Rutkowska, R. Solarska, and J. Augustynski: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18(20), 2298 (2008).

    Article  CAS  Google Scholar 

  23. A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, and J.A. Glasscock: Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31(14), 1999 (2006).

    Article  CAS  Google Scholar 

  24. K.L. Hardee: Semiconductor electrodes: V. The application of chemically vapor deposited iron oxide films to photosensitized electrolysis. J. Electrochem. Soc. 123(7), 1024 (1976).

    Article  CAS  Google Scholar 

  25. J.H. Kennedy: Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125(5), 709 (1978).

    Article  CAS  Google Scholar 

  26. M.P. Dare-Edwards, J.B. Goodenough, A. Hamnett, and P.R. Trevellick: Electrochemistry and photoelectrochemistry of iron(III) oxide. J. Chem. Soc. Faraday Trans. 79(9), 2027 (1983).

    Article  CAS  Google Scholar 

  27. C.M. Eggleston: Geochemistry. Toward new uses for hematite. Science 320(5873), 184 (2008).

    Article  CAS  Google Scholar 

  28. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis: Solar water splitting cells. Chem. Rev. 110(11), 6446 (2010).

    Article  CAS  Google Scholar 

  29. B.M. Klahr and T.W. Hamann: Voltage dependent photocurrent of thin film hematite electrodes. Appl. Phys. Lett. 99(6), 063508 (2011).

    Article  CAS  Google Scholar 

  30. M.J. Katz, S.C. Riha, N.C. Jeong, A.B.F. Martinson, O.K. Farha, and J.T. Hupp: Toward solar fuels: Water splitting with sunlight and “rust”? Coord. Chem. Rev. 256(21–22), 2521 (2012).

    Article  CAS  Google Scholar 

  31. N. Iordanova, M. Dupuis, and K.M. Rosso: Charge transport in metal oxides: A theoretical study of hematite alpha-Fe2O3. J. Chem. Phys. 122(14), 144305 (2005).

    Article  CAS  Google Scholar 

  32. K. Shimizu, A. Lasia, and J-F. Boily: Electrochemical impedance study of the hematite/water interface. Langmuir 28(20), 7914 (2012).

    Article  CAS  Google Scholar 

  33. J. Liu, M. Shahid, Y.S. Ko, E. Kim, T.K. Ahn, J.H. Park, and Y.U. Kwon: Investigation of porosity and heterojunction effects of a mesoporous hematite electrode on photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 15(24), 9775 (2013).

    Article  CAS  Google Scholar 

  34. J. Brillet, M. Grätzel, and K. Sivula: Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett. 10(10), 4155 (2010).

    Article  CAS  Google Scholar 

  35. R.H. Gonçalves, B.H.R. Lima, and E.R. Leite: Magnetite colloidal nanocrystals: A facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. J. Am. Chem. Soc. 133(15), 6012 (2011).

    Article  CAS  Google Scholar 

  36. Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, and Y. Li: Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11(5), 2119 (2011).

    Article  CAS  Google Scholar 

  37. C.X. Kronawitter, I. Zegkinoglou, C. Rogero, J.H. Guo, S.S. Mao, F.J. Himpsel, and L. Vayssieres: On the interfacial electronic structure origin of efficiency enhancement in hematite photoanodes. J. Phys. Chem. C 116(43), 22780 (2012).

    Article  CAS  Google Scholar 

  38. F.L. Souza, K.P. Lopes, P.A.P. Nascente, and E.R. Leite: Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting. Sol. Energy Mater. Sol. Cells 93, 362 (2009).

    Article  CAS  Google Scholar 

  39. I. Cesar, A. Kay, J.A. Gonzalez Martinez, and M. Grätzel: Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 128(14), 4582 (2006).

    Article  CAS  Google Scholar 

  40. A. Kay, I. Cesar, and M. Grätzel: New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 128(49), 15714 (2006).

    Article  CAS  Google Scholar 

  41. S.D. Tilley, M. Cornuz, K. Sivula, and M. Grätzel: Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 122(36), 6549 (2010).

    Article  Google Scholar 

  42. N.T. Hahn and C.B. Mullins: Photoelectrochemical performance of nanostructured Ti-and Sn-doped α-Fe2O3 photoanodes. Chem. Mater. 22, 6474 (2010).

    Article  CAS  Google Scholar 

  43. J. Frydrych, L. Machala, J. Tucek, K. Siskova, J. Filip, J. Pechousek, K. Safarova, M. Vondracek, J.H. Seo, O. Schneeweiss, M. Grätzel, K. Sivula, and R. Zboril: Facile fabrication of tin-doped hematite photoelectrodes: Effect of doping on magnetic properties and performance for light-induced water splitting. J. Mater. Chem. 22(43), 23232 (2012).

    Article  CAS  Google Scholar 

  44. J.A. Glasscock, P.R.F. Barnes, I.C. Plumb, and N. Savvides: Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 111(44), 16477 (2007).

    Article  CAS  Google Scholar 

  45. C. Sanchez, K.D. Sieber, and G.A. Somorjai: The photoelectrochemistry of niobium doped α-Fe2O3. J. Electroanal. Chem. 252(2), 269 (1988).

    Article  CAS  Google Scholar 

  46. T. Hisatomi, H. Dotan, M. Stefik, K. Sivula, A. Rothschild, M. Grätzel, and N. Mathews: Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer. Adv. Mater. 24(20), 2699 (2012).

    Article  CAS  Google Scholar 

  47. T. Hisatomi, J. Brillet, M. Cornuz, F. Le Formal, N. Tetreault, K. Sivula, and M. Grätzel: A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting. Faraday Discuss. 155, 223 (2012).

    Article  CAS  Google Scholar 

  48. F.L. Souza, K.P. Lopes, E. Longo, and E.R. Leite: The influence of the film thickness of nanostructured alpha-Fe2O3 on water photooxidation. Phys. Chem. Chem. Phys. 11(8), 1215 (2009).

    Article  CAS  Google Scholar 

  49. F. Le Formal, M. Grätzel, and K. Sivula: Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 20(7), 1099 (2010).

    Article  CAS  Google Scholar 

  50. O. Zandi, B.M. Klahr, and T.W. Hamann: Highly photoactive Ti-doped α-Fe2O3 thin film electrodes: Resurrection of the dead layer. Energy Environ. Sci. 6(2), 634 (2013).

    Article  CAS  Google Scholar 

  51. U. Bjoerksten, J. Moser, and M. Grätzel: Photoelectrochemical studies on nanocrystalline hematite films. Chem. Mater. 6(6), 858 (1994).

    Article  CAS  Google Scholar 

  52. B.I. Kharisov, O.V. Kharissova, and M. Jose-Yacaman: Nanostructures with animal-like shapes. Ind. Eng. Chem. Res. 49(18), 8289 (2010).

    Article  CAS  Google Scholar 

  53. L. Armelao, G. Granozzi, E. Tondello, P. Colombo, G. Principi, P.P. Lottici, and G. Antonioli: Nanocrystalline α-Fe2O3 sol-gel thin films: A microstructural study. J. Non-Cryst. Solids 192–193, 435 (1995).

    Article  Google Scholar 

  54. K. Woo, H.J. Lee, J.P. Ahn, and Y.S. Park: Sol–gel mediated synthesis of Fe2O3 nanorods. Adv. Mater. 15(20), 1761 (2003).

    Article  CAS  Google Scholar 

  55. A. Mao, G.Y. Han, and J.H. Park: Synthesis and photoelectrochemical cell properties of vertically grown α-Fe2O3 nanorod arrays on a gold nanorod substrate. J. Mater. Chem. 20(11), 2247 (2010).

    Article  CAS  Google Scholar 

  56. S.K. Mohapatra, S.E. John, S. Banerjee, and M. Misra: Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21(14), 3048 (2009).

    Article  CAS  Google Scholar 

  57. A.S.N. Murth and K.S. Reddy: Photoelectrochemical behaviour of undoped ferric oxide (α-Fe2O3) electrodes prepared by spray pyrolysis. Mater. Res. Bull. 19(2), 241 (1984).

    Article  Google Scholar 

  58. A. Duret and M. Grätzel: Visible light-induced water oxidation on mesoscopic alpha-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109(36), 17184 (2005).

    Article  CAS  Google Scholar 

  59. F. Le Formal, K. Sivula, and M. Grätzel: The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments. J. Phys. Chem. C 116(51), 26707 (2012).

    Article  CAS  Google Scholar 

  60. N. Beermann, L. Vayssieres, S-E. Lindquist, and A. Hagfeldt: Photoelectrochemical studies of oriented nanorod thin films of hematite. J. Electrochem. Soc. 147(7), 2456 (2000).

    Article  CAS  Google Scholar 

  61. D.A. Wheeler, G. Wang, Y. Ling, Y. Li, and J.Z. Zhang: Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 5(5), 6682 (2012).

    Article  CAS  Google Scholar 

  62. C. Jorand Sartoretti, B.D. Alexander, R. Solarska, I.A. Rutkowska, J. Augustynski, and R. Cerny: Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J. Phys. Chem. B 109(28), 13685 (2005).

    Article  CAS  Google Scholar 

  63. A.B.F. Martinson, M.J. DeVries, J.A. Libera, S.T. Christensen, J.T. Hupp, M.J. Pellin, and J.W. Elam: Atomic layer deposition of Fe2O3 using ferrocene and ozone. J. Phys. Chem. C 115(10), 4333 (2011).

    Article  CAS  Google Scholar 

  64. B.M. Klahr, A.B. Martinson, and T.W. Hamann: Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 27(1), 461 (2011).

    Article  CAS  Google Scholar 

  65. K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Grätzel: Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 132(21), 7436 (2010).

    Article  CAS  Google Scholar 

  66. D.K. Zhong, M. Cornuz, K. Sivula, M. Grätzel, and D.R. Gamelin: Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ. Sci. 4(5), 1759 (2011).

    Article  CAS  Google Scholar 

  67. A. Mao, J.K. Kim, K. Shin, D.H. Wang, P.J. Yoo, G.Y. Han, and J.H. Park: Hematite modified tungsten trioxide nanoparticle photoanode for solar water oxidation. J. Power Sources 210, 32 (2012).

    Article  CAS  Google Scholar 

  68. L-S. Zhong, J-S. Hu, H-P. Liang, A-M. Cao, W-G. Song, and L-J. Wan: Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 18(18), 2426 (2006).

    Article  CAS  Google Scholar 

  69. H.J. Kim, K.I. Choi, A.Q. Pan, I.D. Kim, H.R. Kim, K.M. Kim, C.W. Na, G.Z. Cao, and J.H. Lee: Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion batteries. J. Mater. Chem. 21(18), 6549 (2011).

    Article  CAS  Google Scholar 

  70. J. Li, X. Lai, C. Xing, and D. Wang: One-pot synthesis of porous hematite hollow microspheres and their application in water treatment. J. Nanosci. Nanotechnol. 10(11), 7707 (2010).

    Article  CAS  Google Scholar 

  71. K.S. Lin, Z.P. Wang, S. Chowdhury, and A.K. Adhikari: Preparation and characterization of aligned iron nanorod using aqueous chemical method. Thin Solid Films 517(17), 5192 (2009).

    Article  CAS  Google Scholar 

  72. D.K. Bora, A. Braun, R. Erni, G. Fortunato, T. Graule, and E.C. Constable: Hydrothermal treatment of a hematite film leads to highly oriented faceted nanostructures with enhanced photocurrents. Chem. Mater. 23(8), 2051 (2011).

    Article  CAS  Google Scholar 

  73. L. Xi, P.D. Tran, S.Y. Chiam, P.S. Bassi, W.F. Mak, H.K. Mulmudi, S.K. Batabyal, J. Barber, J.S.C. Loo, and L.H. Wong: Co3O4-decorated hematite nanorods as an effective photoanode for solar water oxidation. J. Phys. Chem. C 116(26), 13884 (2012).

    Article  CAS  Google Scholar 

  74. J. Deng, J. Zhong, A. Pu, D. Zhang, M. Li, X. Sun, and S-T. Lee: Ti-doped hematite nanostructures for solar water splitting with high efficiency. J. Appl. Phys. 112, 084312 (2012).

    Article  CAS  Google Scholar 

  75. S.C. Warren, K. Voïtchovsky, H. Dotan, C.M. Leroy, M. Cornuz, F. Stellacci, C. Hébert, A. Rothschild, and M. Grätzel: Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842 (2013).

    Article  CAS  Google Scholar 

  76. J-J. Wu, Y-L. Lee, H-H. Chiang, and D.K-P. Wong: Growth and magnetic properties of oriented α-Fe2O3 nanorods. J. Phys. Chem. B 110, 18108 (2006).

    Article  CAS  Google Scholar 

  77. A. Mao, N-G. Park, G.Y. Han, and J.H. Park: Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: Use for photoelectrochemical water splitting. Nanotechnology 22, 175703 (2011).

    Article  CAS  Google Scholar 

  78. P.M. Rao and X.L. Zheng: Rapid catalyst-free flame synthesis of dense, aligned α-Fe2O3 nanoflake and CuO nanoneedle arrays. Nano Lett. 9, 3001 (2009).

    Article  CAS  Google Scholar 

  79. A.G. Nasibulin, S. Rackauskas, H. Jiang, Y. Tian, P.R. Mudimela, S.D. Shandakov, L. Nasibulina, J. Sainio, and E.I. Kauppinen: Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2, 373 (2009).

    Article  CAS  Google Scholar 

  80. T. Vincent, M. Gross, H. Dotan, and A. Rothschild: Thermally oxidized iron oxide nanoarchitectures for hydrogen production by solar-induced water splitting. Int. J. Hydrogen Energy 37, 8102–8109 (2012).

    Article  CAS  Google Scholar 

  81. Y. Lin, S. Zhou, S.W. Sheehan, and D. Wang: Nanonet-based hematite heteronanostructures for efficient solar water splitting. J. Am. Chem. Soc. 133, 2398 (2011).

    Article  CAS  Google Scholar 

  82. V.A.N. de Carvalho, R.A.S. Luz, B.H. Lima, F.N. Crespilho, E.R. Leite, and F.L. Souza: Highly oriented hematite nanorods arrays for photoelectrochemical water splitting. J. Power Sources 205, 525 (2012).

    Article  CAS  Google Scholar 

  83. L.C. Ferraz, W.M. Carvalho Jr., D. Criado, and F.L. Souza: Vertically oriented iron oxide films produced by hydrothermal process: Effect of thermal treatment on the physical chemical properties. ACS Appl. Mater. Interfaces 4(10), 5515 (2012).

    Article  CAS  Google Scholar 

  84. X. Hu and J.C. Yu: Continuous aspect-ratio tuning and fine shape control of monodisperse α-Fe2O3 nanocrystals by a programmed microwave–hydrothermal method. Adv. Funct. Mater. 18(6), 880 (2008).

    Article  CAS  Google Scholar 

  85. L. Vayssieres, A. Hagfeldt, and S.E. Lindquist: Purpose-built metal oxide nanomaterials. The emergence of a new generation of smart materials. Pure Appl. Chem. 72(1–2), 47 (2000).

    Article  CAS  Google Scholar 

  86. C.X. Kronawitter, I. Zegkinoglou, S. Shen, J. Guo, F.J. Himpsel, S.S. Mao, and L. Vayssieres: On the orbital anisotropy in hematite nanorod-based photoanodes. Phys. Chem. Chem. Phys. 15, 13483 (2013).

    Article  CAS  Google Scholar 

  87. S. Shen, P. Guo, D.A. Wheeler, J. Jiang, S.A. Lindley, C.X. Kronawitter, J.Z. Zhang, L. Guo, and S.S. Mao: Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays. Nanoscale, 9867–9874 (2013).

    Google Scholar 

  88. C.X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D.A. Wheeler, J.Z. Zhang, B.R. Antoun, and S.S. Mao: A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energy Environ. Sci. 4, 3889 (2011).

    Article  CAS  Google Scholar 

  89. K. Byrappa and M. Yoshimura: Hydrothermal technology: Principles and applications. In Handbook of Hydrothermal Technology (William Andrew Publishing, Norwich, NY, 2001); p. 1.

    Google Scholar 

  90. G. Morey and P. Niggli: The hydrothermal formation of silicates: A review. J. Am. Chem. Soc. 35(9), 1086 (1913).

    Article  CAS  Google Scholar 

  91. M.M. Lencka, A. Anderko, and R.E. Riman: Hydrothermal precipitation of lead zirconate titanate solid solutions: Thermodynamic modeling and experimental synthesis. J. Am. Ceram. Soc. 78(10), 2609 (1995).

    Article  CAS  Google Scholar 

  92. J.O. Eckert, C.C. Hung-Houston, B.L. Gersten, M.M. Lencka, and R.E. Riman: Kinetics and mechanisms of hydrothermal synthesis of barium titanate. J. Am. Ceram. Soc. 79(11), 2929 (1996).

    Article  CAS  Google Scholar 

  93. A.N. Christensen, M-L. Savolainen, G. Johansson, O. Tolboe, and J. Paasivirta: Hydrothermal preparation of goethite and hematite from amorphous iron(III) hydroxide. Acta Chem. Scand. 22, 1487 (1968).

    Article  Google Scholar 

  94. M.A. Blesa and E. Matijević: Phase-transformations of iron-oxides, oxohydroxides, and hydrous oxides in aqueous-media. Adv. Colloid Interface Sci. 29(3–4), 173 (1989).

    Article  CAS  Google Scholar 

  95. L. Vayssieres: On the design of advanced metal oxide nanomaterials. Int. J. Nanotechnol. 1(1–2), 1 (2004).

    Article  CAS  Google Scholar 

  96. L. Vayssieres, N. Beermann, S-E. Lindquist, and A. Hagfeldt: Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron(III) oxides. Chem. Mater. 13(2), 233 (2001).

    Article  CAS  Google Scholar 

  97. P. Wang, D. Wang, J. Lin, X. Li, C. Peng, X. Gao, Q. Huang, J. Wang, H. Xu, and C. Fan: Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device. ACS Appl. Mater. Interfaces 4(4), 2295 (2012).

    Article  CAS  Google Scholar 

  98. S. Shen, C.X. Kronawitter, J. Jiang, S.S. Mao, and L. Guo: Surface tuning for promoted charge transfer in hematite nanorod arrays as water-splitting photoanodes. Nano Res. 5(5), 327 (2012).

    Article  CAS  Google Scholar 

  99. T. Lindgren, H.L. Wang, N. Beermann, L. Vayssieres, A. Hagfeldt, and S.E. Lindquist: Aqueous photoelectrochemistry of hematite nanorod array. Sol. Energy Mater. Sol. Cells 71(2), 231 (2002).

    Article  CAS  Google Scholar 

  100. L. Vayssieres, C. Sathe, S.M. Butorin, D.K. Shuh, J. Nordgren, and J. Guo: One-dimensional quantum-confinement effect in α-Fe2O3 ultrafine nanorod arrays. Adv. Mater. 17(19), 2320 (2005).

    Article  CAS  Google Scholar 

  101. R. Morrish, M. Rahman, J.M. MacElroy, and C.A. Wolden: Activation of hematite nanorod arrays for photoelectrochemical water splitting. ChemSusChem 4(4), 474 (2011).

    Article  CAS  Google Scholar 

  102. J.S. Jang, J. Lee, H. Ye, F-R.F. Fan, and A.J. Bard: Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties. J. Phys. Chem. C 113(16), 6719 (2009).

    Article  CAS  Google Scholar 

  103. P. Kumar, P. Sharma, R. Shrivastav, S. Dass, and V.R. Satsangi: Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int. J. Hydrogen Energy 36(4), 2777 (2011).

    Article  CAS  Google Scholar 

  104. Y-S. Hu, A. Kleiman-Shwarsctein, A.J. Forman, D. Hazen, J-N. Park, and E.W. McFarland: Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 20(12), 3803 (2008).

    Article  CAS  Google Scholar 

  105. K. Sivula: Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J. Phys. Chem. Lett. 4(10), 1624–1633 (2013).

    Article  CAS  Google Scholar 

  106. Y. Ling, G. Wang, J. Reddy, C. Wang, J.Z. Zhang, and Y. Li: The influence of oxygen content on the thermal activation of hematite nanowires. Angew. Chem. Int. Ed. 51(17), 4074 (2012).

    Article  CAS  Google Scholar 

  107. M.W. Kanan and D.G. Nocera: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892), 1072 (2008).

    Article  CAS  Google Scholar 

  108. L. Kavan, K. Kratochvilova, and M. Grätzel: Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime. J. Electroanal. Chem. 394(1–2), 93 (1995).

    Article  Google Scholar 

  109. R.C. Stehle, M.M. Bobek, R. Hooper, and D.W. Hahn: Oxidation reaction kinetics for the steam-iron process in support of hydrogen production. Int. J. Hydrogen Energy 36(23), 15125 (2011).

    Article  CAS  Google Scholar 

  110. J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, E.M. Barea, and E. Palomares: A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorg. Chim. Acta 361(3), 684 (2008).

    Article  CAS  Google Scholar 

  111. J.W. Schultze: Electrochemistry of novel materials. Adv. Mater. 8(4), 360 (1994).

    Article  Google Scholar 

  112. A.M. Xavier, F.F. Ferreira, and F.L. Souza: Morphological and structural evolution of one dimensional hematite nanorods. RSC Adv. (2013, accepted).

  113. T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, and D.G. Nocera: Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110(11), 6474 (2010).

    Article  CAS  Google Scholar 

  114. D.K. Zhong and D.R. Gamelin: Photoelectrochemical water oxidation by cobalt catalyst (“Co-Pi”)/alpha-Fe2O3 composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck. J. Am. Chem. Soc. 132(12), 4202 (2010).

    Article  CAS  Google Scholar 

  115. D.R. Gamelin: Water splitting: Catalyst or spectator? Nat. Chem. 4(12), 965 (2012).

    Article  CAS  Google Scholar 

  116. V. Aroutiounian: Investigation of ceramic Fe2O3\(\left\langle {T_a } \right\rangle\) photoelectrodes for solar energy photoelectrochemical converters. Int. J. Hydrogen Energy 27(1), 33 (2002).

    Article  CAS  Google Scholar 

  117. J.S. Jang, K.Y. Yoon, X. Xiao, F-R.F. Fan, and A.J. Bard: Development of a potential Fe2O3-based photocatalyst thin film for water oxidation by scanning electrochemical microscopy: Effects of Ag−Fe2O3 nanocomposite and Sn doping. Chem. Mater. 21(20), 4803 (2009).

    Article  CAS  Google Scholar 

  118. K.J. McDonald and K-S. Choi: Photodeposition of co-based oxygen evolution catalysts on α-Fe2O3 photoanodes. Chem. Mater. 23(7), 1686 (2011).

    Article  CAS  Google Scholar 

  119. D.K. Zhong, J. Sun, H. Inumaru, and D.R. Gamelin: Solar water oxidation by composite catalyst/alpha-Fe2O3 photoanodes. J. Am. Chem. Soc. 131(17), 6086 (2009).

    Article  CAS  Google Scholar 

  120. Y.R. Hong, Z. Liu, S.F. Al-Bukhari, C.J. Lee, D.L. Yung, D. Chi, and T.S. Hor: Effect of oxygen evolution catalysts on hematite nanorods for solar water oxidation. Chem. Commun. 47(38), 10653 (2011).

    Article  CAS  Google Scholar 

  121. H.G. Cha, J. Song, H.S. Kim, W. Shin, K.B. Yoon, and Y.S. Kang: Facile preparation of Fe2O3 thin film with photoelectrochemical properties. Chem. Commun. 47(8), 2441 (2011).

    Article  CAS  Google Scholar 

  122. Y. Hou, F. Zuo, A. Dagg, and P. Feng: Visible light-driven alpha-Fe2O3 nanorod/graphene/BiV1-xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 12(12), 6464 (2012).

    Article  CAS  Google Scholar 

  123. L. Xi, S.Y. Chiam, W.F. Mak, P.D. Tran, J. Barber, S.C.J. Loo, and L.H. Wong: A novel strategy for surface treatment on hematite photoanode for efficient water oxidation. Chem. Sci. 4(1), 164 (2013).

    Article  CAS  Google Scholar 

  124. R.L. Spray, K.J. McDonald, and K-S. Choi: Enhancing photoresponse of nanoparticulate α-Fe2O3 electrodes by surface composition tuning. J. Phys. Chem. C 115(8), 3497 (2011).

    Article  CAS  Google Scholar 

  125. K.J. McDonald and K-S. Choi: Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation. Chem. Mater. 23(21), 4863 (2011).

    Article  CAS  Google Scholar 

  126. H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, and S.C. Warren: Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958 (2011).

    Article  CAS  Google Scholar 

  127. B.M. Klahr and T.W. Hamann: Current and voltage limiting processes in thin film hematite electrodes. J. Phys. Chem. C 115(16), 8393 (2011).

    Article  CAS  Google Scholar 

  128. G. Rahman and O-S. Joo: Photoelectrochemical water splitting at nanostructured α-Fe2O3 electrodes. Int. J. Hydrogen Energy 37(19), 13989 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge financial support from the Brazilian agencies of FAPESP (Grant Nos. 2011/19924-2, 2012/19926-8, and 2013/07296-2), CAPES, CNPq (Grant No. 555855/2010-4), InstitutoNacionalemEletrônicaOrgânica (INEO), NanoBioMed Brazil Network (CAPES), and INCTMN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Leandro Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Carvalho, W.M., Souza, F.L. Recent advances on solar water splitting using hematite nanorod film produced by purpose-built material methods. Journal of Materials Research 29, 16–28 (2014). https://doi.org/10.1557/jmr.2013.302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.302

Navigation