Skip to main content

Advertisement

Log in

Asparagine-serine-serine peptide regulates enamel remineralization in vitro

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A highly biocompatible peptide, triplet repeats of asparagine-serine-serine (3NSS) regulates mineral deposition for the reconstruction of erosive enamel. Healthy human enamel was demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva. The degrees of nanohardness recovery were 5.02% and 16.27% for the control group and enamel treated with the 3NSS peptide, respectively. Peptides assembling at enamel interred attracted greater quantities of ions from the solution to form nanocrystalline hydroxyapatite minerals during the reconstruction of vacant gap. This resulted in a decrease in the surface roughness, and the acidic eroded pores were filled completely. Additionally, the newly deposited hydroxyapatites remineralized with the aid of the 3NSS peptide exhibited a smaller average crystalline size, which effectively inhibited plastic deformations. Treatment with the 3NSS peptide provided great improvements in nanohardness and elastic modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. T. Aoba: Solubility properties of human tooth mineral and pathogenesis of dental caries. Oral Dis. 10, 249 (2004).

    Article  CAS  Google Scholar 

  2. J. van Houte: Role of microorganisms in caries etiology. J. Dent. Res. 73, 672 (1994).

    Article  Google Scholar 

  3. S.V. Dorozhkin and M. Epple: Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 41, 3130 (2002).

    Article  CAS  Google Scholar 

  4. E.C. Reynolds: Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J. Dent. Res. 76, 1587 (1997).

    Article  CAS  Google Scholar 

  5. Y. Iijima, F. Cai, P. Shen, G. Walker, C. Reynolds, and E.C. Reynolds: Acid resistance of enamel subsurface lesions remineralized by a sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate. Caries Res. 38, 551 (2004).

    Article  CAS  Google Scholar 

  6. K.J. Cross, N.L. Huq, J.E. Palamara, J.W. Perich, and E.C. Reynolds: Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J. Biol. Chem. 280, 15362 (2005).

    Article  CAS  Google Scholar 

  7. M.V. Morgan, G.G. Adams, D.L. Bailey, C.E. Tsao, S.L. Fischman, and E.C. Reynolds: The anticariogenic effect of sugar-free gum containing CPP-ACP nanocomplexes on approximal caries determined using digital bitewing radiography. Caries Res. 42, 171 (2008).

    Article  CAS  Google Scholar 

  8. M. Hannig and C. Hannig: Nanomaterials in preventive dentistry. Nat. Nanotechnol. 5, 565 (2010).

    Article  CAS  Google Scholar 

  9. Y.R. Cai and R.K. Tang: Calcium phosphate nanoparticles in biomineralization and biomaterials. J. Mater. Chem. 18, 3775 (2008).

    Article  CAS  Google Scholar 

  10. M.S. Tung and F.C. Eichmiller: Amorphous calcium phosphates for tooth mineralization. Comp. Cont. Educ. Dent. 25, 9 (2004).

    Google Scholar 

  11. J. Kirkham, A. Firth, D. Vernals, N. Boden, C. Robinson, R.C. Shore, S.J. Brookes, and A. Aggeli: Self-assembling peptide scaffolds promote enamel remineralization. J. Dent. Res. 86, 426 (2007).

    Article  CAS  Google Scholar 

  12. S. Segman-Magidovich, H. Grisaru, T. Gitli, Y. Levi-Kalisman, and H. Rapaport: Matrices of acidic beta-sheet peptides as templates for calcium phosphate mineralization. Adv. Mater. 20, 2156 (2008).

    Article  CAS  Google Scholar 

  13. A. George, L. Bannon, B. Sabsay, J.W. Dillon, J. Malone, A. Veis, N.A. Jenkins, J.G. Debra, and G.C. Neal: The carboxyl-terminal domain of phosphophoryn contains unique extended triplet amino acid repeat sequences forming ordered carboxyl-phosphate interaction ridges that may be essential in the biomineralization process. J. Biol. Chem. 271, 32869 (1996).

    Article  CAS  Google Scholar 

  14. C.C. Hsu, H.Y. Chung, J.M. Yang, W. Shi, and B. Wu: Influence of 8DSS peptide on nano-mechanical behavior of human enamel. J. Dent. Res. 90, 88 (2011).

    Article  CAS  Google Scholar 

  15. H.Y. Chung, C.C. Li, and C.C. Hsu: Characterization of the effects of 3DSS peptide on remineralized enamel in artificial saliva. J. Mech. Behav. Biomed. Mater. 6, 74 (2012).

    Article  CAS  Google Scholar 

  16. E.L. Norcy, S.Y. Kwak, F.B. Wiedemann-Bidlack, E. Beniash, Y. Yamakoshi, J.P. Simmer, and H.C. Margolis: Leucine-rich amelogenin peptides regulate mineralization in vitro. J. Dent. Res. 90, 1091 (2011).

    Article  Google Scholar 

  17. R.I. Holland: Corrosion testing by potentiodynamic polarization in various electrolytes. Dent. Mater. 8, 241 (1992).

    Article  CAS  Google Scholar 

  18. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  19. J. Zhou and L.L. Hsiung: Biomolecular origin of the rate-dependent deformation of prismatic enamel. Appl. Phys. Lett. 89, 51904 (2006).

    Article  Google Scholar 

  20. T. Moriguchi, K. Yano, S. Nakagawa, and F. Kaji: Elucidation of adsorption mechanism of bone-staining agent alizarin red S on hydroxyapatite by FT-IR microspectroscopy. J. Colloid Interface Sci. 260, 19 (2003).

    Article  CAS  Google Scholar 

  21. J. Reyes-Gasga, R. García-García, M.J. Arellano-Jiménez, E. Sanchez-Pastenes, G.E. Tiznado-Orozco, I.M. Gil-Chavarria, and G. Gómez-Gasga: Structural and thermal behaviour of human tooth and three synthetic hydroxyapatites from 20 to 600 °C. J. Phys. D. Appl. Phys. 41, 225407 (2008).

    Article  Google Scholar 

  22. G.K. Toworfe, R.J. Composto, I.M. Shapiro, and P. Ducheyne: Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials 27, 631 (2006).

    Article  CAS  Google Scholar 

  23. H. Fong, M. Sarikaya, S.N. White, and M.L. Snead: Nano-mechanical properties profiles across dentin-enamel junction of human incisor teeth. Mater. Sci. Eng., C 7, 119 (2000).

    Article  Google Scholar 

  24. J.L. Cuy, A.B. Mann, K.J. Livi, M.F. Teaford, and T.P. Weihs: Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 47, 281 (2002).

    Article  CAS  Google Scholar 

  25. G. Balooch, G.W. Marshall, S.J. Marshall, O.L Warren, S.A.S. Asif, and M. Balooch: Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J. Biomech. 37, 1223 (2004).

    Article  CAS  Google Scholar 

  26. S. Roy and B. Basu: Mechanical and tribological characterization of human tooth. Mater. Charact. 59, 747 (2008).

    Article  CAS  Google Scholar 

  27. C.C. Hsu, H.Y. Chung, J.M. Yang, W. Shi, and B. Wu: Influences of ionic concentration on nanomechanical behaviors for remineralized enamel. J. Mech. Behav. Biomed. Mater. 4, 1982 (2011).

    Article  CAS  Google Scholar 

  28. J.A. Cury, G.S. Simões, A.A. Del Bel Cury, N.C. Gonçalves, and C.P.M. Tabchoury: Effect of a calcium carbonate-based dentifrice on in situ enamel remineralization. Caries Res. 39, 255 (2005).

    Article  CAS  Google Scholar 

  29. L.E. Bertassoni, S. Habelitz, S.J. Marshall, and G.W. Marshall: Mechanical recovery of dentin following remineralization in vitro: An indentation study. J. Biomech. 44, 176 (2011).

    Article  Google Scholar 

  30. N. Srinivasan, M. Kavitha, and S.C. Loganathan: Comparison of the remineralization potential of CPP–ACP and CPP–ACP with 900ppm fluoride on eroded human enamel: An in situ study. Arch. Oral Biol. 55, 541 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, HY., Li, CC. Asparagine-serine-serine peptide regulates enamel remineralization in vitro. Journal of Materials Research 28, 2890–2896 (2013). https://doi.org/10.1557/jmr.2013.292

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.292

Navigation