Skip to main content
Log in

Switching magnetic order in nanoporous Pd–Ni by electrochemical charging

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present work demonstrates an isothermal reversible variation of magnetization in nanoporous Pd67Ni33 alloy during continuous charging and discharging of the alloy electrode in 1-M KOH solution. A custom-built electrochemical cell, containing the sample as working electrode performed the in situ charging experiments inside an extraction magnetometer at a constant applied magnetic field. The metal–electrolyte response was examined by varying the electrode potential, which apart from polarizing nanoporous structure, may also lead to electrodissociation of the electrolyte medium, being aqueous in nature. The result therefore analyzed hydrogenation as the key parameter for the observed reversible magnetization in the transition metal alloy at room temperature. In addition, electrochemical reactivity due to surface oxidation at the positive potential has been discussed, considering that a change in the band structure is also possible at the negative potential regime due to hydrogenation through cyclic voltammetry study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. B.D. Cullity: Introduction to Magnetic Materials (Addition-Wesley, Reading, MA, 1972), p. 144.

    Google Scholar 

  2. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani: Electric-field control of ferromagnetism. Nature 408, 944 (2000).

    Article  CAS  Google Scholar 

  3. H. Gleiter: Tuning the electronic structure of solids by means of nanometer-sized microstructures. Scr. Mater. 44, 1161 (2001).

    Article  CAS  Google Scholar 

  4. J. Weissmüller, R.N. Viswanath, D. Kramer, P. Zimmer, R. Würschum, and H. Gleiter: Charge-induced reversible strain in a metal. Science 300, 312 (2003).

    Article  Google Scholar 

  5. J. Biener, A. Wittstock, L.A. Zepeda-Ruiz, M.M. Biener, V. Zielasek, D. Kramer, R.N. Viswanath, J. Weissmüller, M. Bäumer, and A.V. Hamza: Surface-chemistry-driven actuation in nanoporous gold. Nature 8, 47 (2009).

    Article  CAS  Google Scholar 

  6. W. Haiss: Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64, 591 (2001).

    Article  CAS  Google Scholar 

  7. R.J. Nichols, T. Nouar, C.A. Lucas, W. Haiss, and W.A. Hofer: Surface relaxation and surface stress of Au (1 1 1). Surf. Sci. 513, 263 (2002).

    Article  CAS  Google Scholar 

  8. L. Kavan, R. Rapta, L. Dunsch, M.J. Bronikowski, P. Willis, and R.E. Smalley: Electrochemical tuning of electronic structure of single-walled carbon nanotubes: In-situ Raman and Vis-NIR study. J. Phys. Chem. B 105, 10764 (2001).

    Article  CAS  Google Scholar 

  9. R.M. Bozorth: Ferromagnetism (Wiley-IEEE Press, New York, NY, 2003), p. 440.

    Google Scholar 

  10. R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz: Carbon nanotube actuators. Science 284, 1340 (1999).

    Article  CAS  Google Scholar 

  11. A.K. Mishra, C. Bansal, and H. Hahn: Surface charge induced variation in the electrical conductivity of nanoporous gold. J. Appl. Phys. 103, 094308 (2008).

    Article  Google Scholar 

  12. M. Sagmeister, U. Brossmann, S. Landgraf, and R. Würschum: Electrically tunable resistance of a metal. Phys. Rev. Lett. 96, 156601 (2006).

    Article  CAS  Google Scholar 

  13. C. Lemier, S. Ghosh, and J. Weissmueller: Charge induced variation of the magnetization in nanoporous Ni-Pd. MRS Proc. 876, R2.6 (2005).

    Article  Google Scholar 

  14. S. Ghosh, C. Lemier, and J. Weissmüller: Charge-dependent magnetization in nanoporous Pd-Co Alloys. IEEE Trans. Magn. 42, 3617 (2006).

    Article  CAS  Google Scholar 

  15. S. Ghosh: Charge-response of magnetization in nanoporous Pd–Ni alloys. J. Magn. Magn. Mater. 323, 552 (2011).

    Article  CAS  Google Scholar 

  16. A.K. Mishra, C. Bansal, M. Ghafari, R. Kruk, and H. Hahn: Tuning properties of nanoporous Au-Fe alloys by electrochemically induced surface charge variations. Phys. Rev. B 81, 155452 (2010).

    Article  Google Scholar 

  17. M. Grdeń, A. Czerwinski, J. Golimowski, E. Bulska, B. Krasnodebska-Ostrega, R. Marassi, and S. Zamponi: Hydrogen electrosorption in Ni–Pd alloys. J. Electroanal. Chem. 460, 30 (1999).

    Article  Google Scholar 

  18. M. Grdeń, K. Kusmierczyk, and A. Czerwiński: Study of hydrogen electrosorption in Pd-Ni alloys by the quartz crystal microbalance. J. Solid State Electrochem. 7, 43 (2002).

    Article  Google Scholar 

  19. M. Grdeń, K. Klimek, and A. Czerwiński: Quartz crystal microbalance studies on electrochemical behavior of electrodeposited Pd–Ni alloys. Electrochim. Acta 51, 2221 (2006).

    Article  Google Scholar 

  20. H. Gleiter: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (2000).

    Article  Google Scholar 

  21. H.P. Klug and L.E. Alexander: X-ray Diffraction Procedures: For Polycrystallite and Amorphous Materials, 2nd ed. (John Wiley and Sons, New York, 1974) p. 618.

    Google Scholar 

  22. R. Campesi, F. Cuevas, E. Leroy, M. Hirscher, R. Gadiou, C. Vix-Guterl, and M. Latroche: In situ synthesis and hydrogen storage properties of PdNi alloy nanoparticles in an ordered mesoporous carbon template. Microporous Mesoporous Mater. 117, 511 (2009).

    Article  CAS  Google Scholar 

  23. W.A. Ferrando, R. Segnan, and A.I. Schindler: Matrix and impurity-cluster polarization in Ni-Pt and Ni-Pd alloys. Phys. Rev. B 5, 4657 (1972).

    Article  Google Scholar 

  24. R.H. Kodama and A.E. Berkowitz: Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 59, 6321 (1999).

    Article  CAS  Google Scholar 

  25. H.F. Biggs: The decrease in the paramagnetism of palladium caused by absorbed hydrogen. Philos. Mag. 32, 40 (1916).

    Article  Google Scholar 

  26. B. Svensson: Die magnetische Suszeptibilität der elektrolytisch aufgeladenen Palladium-Wasserstofflegierungen. Ann. D. Phys. 410, 299 (1933).

    Article  Google Scholar 

  27. X. Ke, G.J. Kramer, and O.M. Løvvik: The influence of electronic structure on hydrogen absorption in palladium alloys. J. Phys. Condens. Matter. 16, 6267 (2004).

    Article  CAS  Google Scholar 

  28. H. Raffy, L. Dumoulin, and J.B. Burger: Enhancement of the magnetic hysteresis in ultrathin PdNi films by hydrogen absorption-desorption cycling. J. Magn. Magn. Mater. 69, 258 (1987).

    Article  CAS  Google Scholar 

  29. E.A. Crespo, M. Ruda, and R.D.S. Debiaggi: Hydrogen absorption in Ni and Pd: A study based on atomistic calculations. Int. J. Hydrogen Energy 33, 3561 (2008).

    Article  CAS  Google Scholar 

  30. H. Kurokova, T. Nakayama, Y. Kobayashi, K. Suzuki, M. Takahashi, S. Takami, M. Kubo, N. Itoh, P. Selvam, and A. Miyamoto: Monte Carlo simulation of hydrogen absorption in palladium and palladium–silver alloys. Catal. Today 82, 233 (2003).

    Article  Google Scholar 

  31. J. Beille and G. Chouteau: Giant moments and pressure effects in Pd-Ni alloys. J. Phys. F: Met. Phys. 5, 721 (1975).

    Article  CAS  Google Scholar 

  32. E. Tatsumoto, H. Fujiwara, T. Okamoto, and H. Fujii: Effect of hydrostatic pressures on the Curie temperature in Pd-Ni Alloys. J. Phys. Soc. Jpn. 25, 1734 (1968).

    Article  CAS  Google Scholar 

  33. C.D.J. Gelatt, H. Ehrenreich, and J.A. Weiss: Transition-metal hydrides: Electronic structure and the heats of formation. Phys. Rev. B 17, 1940 (1978).

    Article  CAS  Google Scholar 

  34. J. Mathon: Pressure dependence of the magnetization in the itinerant electron model of ferromagnetism. J. Phys. F: Met. Phys. 2, 159 (1972).

    Article  CAS  Google Scholar 

  35. S.G. Das, D.D. Koelling, and F.M. Mueller: Pressure dependence of the electronic structure and Fermi surface of palladium. Solid State Commun. 12, 89 (1973).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is greatly indebted to Dr. Joerg Weissmueller and Dr. Christian Lemier for extended support to this work and Mr. Torsten Scherer for the EDX analysis of the samples. Financial support from the Center for Functional Nanostructures (CFN), Karlsruhe is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhan Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S. Switching magnetic order in nanoporous Pd–Ni by electrochemical charging. Journal of Materials Research 28, 3010–3017 (2013). https://doi.org/10.1557/jmr.2013.291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.291

Navigation