Skip to main content
Log in

The effects of crosslink density on thermo-mechanical properties of shape-memory hydro-epoxy resin

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The objective of this work is to reveal the relationship between the molecular structure and shape-memory property of a hydro-epoxy resin system. The system is prepared using hydro-epoxy, menthane diamine (MDA), and poly(propylene glycol) diglycidyl ether (PPGDGE) with different molecular weights. By keeping the PPGDGE content constant, the crosslink density of the shape-memory hydro-epoxy resin system can be changed by varying the molecular weight of PPGDGE. The results indicate that the glass transition temperature (Tg) and rubber modulus (Er) decrease as the crosslink density decreases. The crosslink density has little influence on shape recovery ratio (Rr). Full recovery can be observed after only several minutes when the temperature is equal to or above Tg. However, the crosslink density has a profound effect on the shape fixity ratio (Rf). If the crosslink density is too low, the shape fixity ratio of shape-memory hydro-epoxy resin would not reach 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE II.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. T. Ware, K. Hearon, A. Lonnecker, K.L. Wooley, D.J. Maitland, and W. Voit: Triple-shape memory polymers based on self-complementary hydrogen bonding. Macromolecules 45, 1062 (2012).

    Article  CAS  Google Scholar 

  2. J.A. Shumaker, A.J.W. McClung, and J.W. Baur: Synthesis of high temperature polyaspartimide-urea based shape memory polymers. Polymer 53, 4637 (2012).

    Article  CAS  Google Scholar 

  3. C.C. Wang, W.M. Huang, Z. Ding, Y. Zhao, and H. Purnawali: Cooling-/water-responsive shape memory hybrids. Compos. Sci. Technol. 72, 1178 (2012).

    Article  CAS  Google Scholar 

  4. K.M. Lee, H. Koerner, R.A. Vaia, T.J. Bunning, and T.J. White: Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 7, 4318 (2011).

    Article  CAS  Google Scholar 

  5. K. Wei, G.M. Zhu, Y.S. Tang, X.M. Li, and T.T. Liu: The effects of carbon nanotubes on electroactive shape-memory behaviors of hydro-epoxy/carbon black composite. Smart Mater. Struct. 21, 085016 (2012).

    Article  Google Scholar 

  6. J.S. Leng, H.B. Lv, Y.J. Liu, and S.Y. Du: Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers. Appl. Phys. Lett. 91, 144105 (2007).

    Article  Google Scholar 

  7. T. Gong, W.B. Li, H.M. Chen, L. Wang, S.J. Shao, and S.B. Zhou: Remotely actuated shape memory effect of electrospun composite nanofibers. Acta Biomater. 8, 1248 (2012).

    Article  CAS  Google Scholar 

  8. S. Pandini, S. Passera, M. Messori, K. Paderni, M. Toselli, A. Gianoncelli, E. Bontempi, and T. Ricco: Two-way reversible shape memory behaviour of crosslinked poly(e-caprolactone). Polymer 53, 1915 (2012).

    Article  CAS  Google Scholar 

  9. K.Y. Mya, H.B. Gose, T. Pretsch, M. Bothe, and C.B. He: Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance. J. Mater. Chem. 21, 4827 (2011).

    Article  CAS  Google Scholar 

  10. K. Paderni, S. Pandini, S. Passera, F. Pilati, M. Toselli, and M. Messori: Shape-memory polymer networks from sol-gel cross-linked alkoxysilane-terminated poly(e-caprolactone). J. Mater. Sci. 47, 4354 (2012).

    Article  CAS  Google Scholar 

  11. H. Kalita, M. Mandal, and N. Karak: Biodegradable solvent-induced shape-memory hyperbranched polyurethane. J. Polym. Res. 19, 9982 (2012).

    Article  Google Scholar 

  12. F.J. Ji, J.L. Hu, and S.S.Y. Chui: Influences of phase composition and thermomechanical conditions on shape memory properties of segmented polyurethanes with amorphous reversible phase. Polym. Eng. Sci. 52, 1015 (2012).

    Article  CAS  Google Scholar 

  13. C. Meiorin, M.I. Aranguren, and M.A. Mosiewicki: Vegetable oil/styrene thermoset copolymers with shape memory behavior and damping capacity. Polym. Int. 61, 735 (2012).

    Article  CAS  Google Scholar 

  14. H.B. Lu, Y.J. Liu, J.S. Leng, and S.Y. Du: Qualitative separation of the physical swelling effect on the recovery behavior of shape memory polymer. Eur. Polym. J. 46, 1908 (2010).

    Article  CAS  Google Scholar 

  15. A.J.W. McClung, G.P. Tandon, and J.W. Baur: Strain rate- and temperature-dependent tensile properties of an epoxy-based, thermosetting, shape memory polymer (Veriflex-E). Mech. Time-Depend. Mater. 16, 205 (2012).

    Article  CAS  Google Scholar 

  16. Q. Fabrizio, S. Loredana, and S.E. Anna: Shape memory epoxy foams for space applications. Mater. Lett. 69, 20 (2012).

    Article  CAS  Google Scholar 

  17. T. Xie and I.A. Rousseau: Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50, 1852 (2009).

    Article  CAS  Google Scholar 

  18. Y.Y. Liu, C.M. Han, H.F. Tan, and X.W. Du: Thermal, mechanical and shape memory properties of shape memory epoxy resin. Mater. Sci. Eng., A 527, 2510 (2010).

    Article  Google Scholar 

  19. K. Wei, G.M. Zhu, Y.S. Tang, G.M. Tian, and J.Q. Xie: Thermomechanical properties of shape-memory hydro-epoxy resin. Smart Mater. Struct. 21, 055022 (2012).

    Article  Google Scholar 

  20. J.S. Leng, X.L. Wu, and Y.J. Liu: Effect of a linear monomer on the thermomechanical properties of epoxy shape-memory polymer. Smart Mater. Struct. 18, 095031 (2009).

    Article  Google Scholar 

  21. X. Lan, Y.J. Liu, J.S. Leng, and S.Y. Du: Thermomechanical behavior of fiber reinforced shape memory polymer composite. In SPIE International Conference on Smart Materials and Nanotechnology in Engineering, Vol. 6423, edited by S.Y. Du, J.S. Leng, and A.K. Asundi (SPIE Press, Harbin, P.R. China, 2007), 64235R.

    Article  Google Scholar 

  22. F. Castro, K.K. Westbrook, J. Hermiller, D.U. Ahn, Y.F. Ding, and H.J. Qi: Time and temperature dependent recovery of epoxy-based shape memory polymers. J. Eng. Mater. Technol. 133, 021025 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Wei.

Additional information

Address all correspondence to these authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, K., Zhu, G., Tang, Y. et al. The effects of crosslink density on thermo-mechanical properties of shape-memory hydro-epoxy resin. Journal of Materials Research 28, 2903–2910 (2013). https://doi.org/10.1557/jmr.2013.277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.277

Navigation