Skip to main content
Log in

Nanoindentation cracking in gallium arsenide: Part II. TEM investigation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The nanoindentation fracture behavior of gallium arsenide (GaAs) is examined from two perspectives in two parent papers. In the first paper (part I), we address the morphology of the crack field induced by different types of indenters by means of in situ nanoindentation inside a scanning electron microscope (SEM) and of cleavage cross-sectioning techniques. In the present paper (part II), we investigate the early stage of crack nucleation under wedge nanoindentation through cathodoluminescence and transmission electron microscopy. We find that the apex angle of the wedge indenter influences the dislocation microstructure and, as a consequence, the mechanism of crack nucleation under nanoindentation. The formation of microtwins depends on both the orientation of the indenter with respect to the orientation of the GaAs crystal and on the apex angle of the indenter. For dicing applications of GaAs wafers, it is desirable to have an opening angle of the indenter smaller than 70° to facilitate the formation of precursor cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
TABLE I.

Similar content being viewed by others

References

  1. K. Wasmer, C. Pouvreau, J-M. Breguet, J. Michler, D. Schulz, and J. Giovanola: Nanoindentation cracking in gallium arsenide: Part I: In situ SEM nanoindentation. J. Mater. Res. 28(20), 2785–2798 (2013). DOI: 10.1557/jmr.2013.252

    Article  CAS  Google Scholar 

  2. K. Wasmer, C. Ballif, R. Gassilloud, C. Pouvreau, R. Rabe, J. Michler, J.M. Breguet, J-M. Solletti, A. Karimi, and D. Schulz: Aspects of cleavage fracture of brittle semiconductors from the nanometre to the centimetre scale. Adv. Eng. Mater. 7, 309 (2005).

    Article  CAS  Google Scholar 

  3. K. Wasmer, C. Ballif, C. Pouvreau, D. Schulz, and J. Michler: Dicing of gallium-arsenide high performance laser diodes for industrial applications: Part I. Scratching operation. J. Mater. Process. Technol. 198, 114 (2008).

    Article  Google Scholar 

  4. K. Wasmer, C. Ballif, C. Pouvreau, D. Schulz, and J. Michler: Dicing of gallium-arsenide high performance laser diodes for industrial applications: Part II. Cleavage operation. J. Mater. Process. Technol. 198, 105 (2008).

    Article  Google Scholar 

  5. C. Pouvreau, K. Wasmer, J. Giovanola, J-M. Breguet, J. Michler, and A. Karimi: In-situ scanning electron microscope indentation of gallium arsenide. In 16th European Conference on Fracture (ECF16), Proceedings of the 16th European Conference of Fracture, Alexandroupolis, Greece, July 3-7, 2006 E.E. Gdoutos, ed, (Springer, New York, NY, 2006), p. 61.

    Google Scholar 

  6. K. Wasmer, M. Parlinska-Wojtan, R. Gassilloud, C. Pouvreau, J. Tharian, and J. Michler: Plastic deformation modes of gallium-arsenide in nanoindentation and nanoscratching. Appl. Phys. Lett. 90, 031902 (2007).

    Article  Google Scholar 

  7. M. Parlinska-Wojtan, K. Wasmer, J. Tharian, and J. Michler: Microstructural comparison of material damage in GaAs caused by Berkovich and wedge nanoindentation and nanoscratching. Scr. Mater. 59, 364 (2008).

    Article  CAS  Google Scholar 

  8. K. Wasmer, M. Parlinska-Wojtan, S. Graça, and J. Michler: Sequence of deformation and cracking behaviours of gallium arsenide during nano-scratching. J. Mater. Chem. Phys. 138, 38 (2013).

    Article  CAS  Google Scholar 

  9. P. Warren, P. Pirouz, and S. Roberts: Simultaneous observation of alpha and beta-dislocation movement and their effect on the fracture behaviour of GaAs. Philos. Mag. A 50, 23 (1984).

    Article  Google Scholar 

  10. Y. Androussi, G. Vanderschaeve, and A. Lefebvre: Slip and twinning in high-stress-deformed GaAs and the influence of doping. Philos. Mag. A 59, 1189 (1989).

    Article  CAS  Google Scholar 

  11. S. Fujita, K. Maeda, and S. Hyodo: Dislocation mobility-controlled cracking in GaAs caused by constant-rate indentation. Philos. Mag. A 65, 131 (1992).

    Article  CAS  Google Scholar 

  12. G. Vanderschaeve: Mechanical twinning in semiconductors. Solid State Phenom. 59–60, 145 (1998).

    Article  Google Scholar 

  13. J. Bradby, J. Williams, J.W. Leung, M. Swain, and P. Munroe: TEM observation of deformation microstructure under spherical indentation. Appl. Phys. Lett. 77, 3749 (2000).

    Article  CAS  Google Scholar 

  14. H.S. Leipner, D. Lorenz, A. Zeckzer, H. Lei, and P. Grau: Nanoindentation pop-in effect in semiconductors. Physica B 308–310, 446 (2001).

    Article  Google Scholar 

  15. J.E. Bradby, J.S. Williams, and J. Wong-Leung: Mechanical deformation of InP and GaAs by spherical indentation. Appl. Phys. Lett. 78, 3235 (2001).

    Article  CAS  Google Scholar 

  16. L. Largeau, G. Patriarche, E. Le Bourhis, A. Rivière, and J. Rivière: Indentation induced deformations of GaAs (011) at a high temperature. Philos. Mag. 83, 1653 (2003).

    Article  CAS  Google Scholar 

  17. E. Le Bourhis and G. Patriarche: Plastic deformation of III-V semiconductors under concentrated load. Prog. Cryst. Growth Char. Mater. 47, 1 (2003).

    Article  Google Scholar 

  18. S. Wang, M. Zhang, J. Bradby, and P. Pirouz: Static microindentation and displacement sensitive indentation tests on undoped GaAs. In MRS Proceedings, Vol. 904, ed. J.E. Bradby, S.O. Kucheyev, E.A. Stach, M.V. Swain, (Materials Research Society, Warrendale, PA, 2005).

  19. A. Lefebvre, Y. Androussi, and G. Vanderschaeve: A TEM investigation of the dislocation rosettes around a Vickers indentation in GaAs. Phys. Status Solidi A 99, 405 (1987).

    Article  CAS  Google Scholar 

  20. R.W. Margevicius and P. Gumbsch: Influence of crack propagation direction on 110 fracture toughness of gallium arsenide. Philos. Mag. A 78, 567 (1998).

    Article  CAS  Google Scholar 

  21. L. Largeau and G. Patriarche: Subsurface deformation induced by a Vickers indenter in GaAs/AlGaAs superlattice. J. Mater. Sci. Lett. 21, 401 (2002).

    Article  CAS  Google Scholar 

  22. K. Maeda, H. Nishioka, N. Narita, and S. Fujita: Brittle-to-ductile transition studied by constant-rate indentation cracking. Mater. Sci. Eng., A 176, 121 (1994).

    Article  CAS  Google Scholar 

  23. F. Giuliani, S.J. LLoyd, L.J. Vandeperre, and W.J. Clegg: Deformation in GaAs under nanoindentation. EMAG, Oxford, S.D. McVitie and McCombe, eds., p. 123 (IOP Publishing Ltd., 2003).

    Google Scholar 

  24. J. Bradby, J. Williams, and M. Swain: Pop-in events induced by spherical indentation in compound semiconductors. J. Mater. Res. 19, 380 (2004).

    Article  CAS  Google Scholar 

  25. J.W. Edington: Practical Electron Microscopy in Materials Science, 2nd ed. (Van Nostrand Reinhold Company, New York, NY, 1976).

    Google Scholar 

  26. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed. (John Wiley and Sons, New York, NY, 1982).

    Google Scholar 

  27. K.L. Johnson: Contact Mechanics, 1st ed. (Cambridge University Press, Cambridge, UK, 1985).

    Book  Google Scholar 

  28. A.B. Mann and J.B. Pethica: The role of atomic size asperities in the mechanical deformation of nanocontacts. Appl. Phys. Lett. 69, 907 (1996).

    Article  CAS  Google Scholar 

  29. A.B. Mann and J.B. Pethica: The effect of tip momentum on the contact stiffness and yielding during nanoindentation testing. Philos. Mag. A 79, 577 (1999).

    Article  CAS  Google Scholar 

  30. C. Levade and G. Vanderschaeve: Rosette microstructure in indented (001) GaAs single crystal and the alpha/beta symmetry. Phys. Status Solidi A 171, 83 (1999).

    Article  CAS  Google Scholar 

  31. S. Koubaïti, C. Levade, G. Vanderschaeve, and J.J. Couderc: Vickers indentation on the 001 faces of GaAs under infrared illumination and in darkness. Philos. Mag. A 80, 83 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilian Wasmer.

Additional information

Address all correspondence to this author

Both authors have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouvreau, C., Wasmer, K., Hessler-Wyser, H. et al. Nanoindentation cracking in gallium arsenide: Part II. TEM investigation. Journal of Materials Research 28, 2799–2809 (2013). https://doi.org/10.1557/jmr.2013.275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.275

Navigation