Skip to main content
Log in

Sol–gel-derived nanocrystalline aluminum-doped zinc oxide thin films for use as antireflection coatings in silicon solar cells

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Sol–gel-derived aluminum (Al)-doped zinc oxide thin films have been deposited on silicon (Si) wafers and microslide glass substrates using the spin coating technique. The atomic ratio of Al:Zn in the films is 0.05, 0.1, 0.2, and 0.3. The films have been characterized using different techniques, i.e., x-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscopy, UV-visible-near infrared spectrophotometry, spectroscopic ellipsometry, and the four-probe method. The films have exhibited excellent optical transmittance (∼90%). The refractive indices of the films are in the range between 1.47 and 1.53. The thickness of the films is in the range of 103–115 nm. The films have demonstrated reflectivity of about 3% at a wave length of 600 nm. The reflectivity, transmittance, refractive index, and thickness values of the films show that the films are promising candidates for utility as antireflection coatings in silicon solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE I.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. A. Ortız, A. Sanchez, C. Falcony, M.H. Farıas, G.A. Hirata, and L. Cota-Araiza: Lack of chemical interaction of hydrogenated amorphous silicon with indium-doped zinc oxide transparent conductive films. J. Non-Cryst. Solids 103, 9 (1988).

    Article  Google Scholar 

  2. M.A. Martinez, J. Herrero, and M.T. Gutierrez: Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells. Sol. Energy Mater. Sol. Cells 45, 75 (1997).

    Article  CAS  Google Scholar 

  3. S. Oktik: Low cost, non-vacuum techniques for the preparation of thin/thick films for photovoltaic applications. Prog. Cryst. Growth Charact. Mater. 17, 171 (1988).

    Article  CAS  Google Scholar 

  4. J. Zhao, L.Z. Hu, Z.Y. Wang, Y. Zhao, X.P. Liang, and M.T. Wang: High-quality ZnO thin films prepared by low temperature oxidation of metallic Zn. Appl. Surf. Sci. 229, 311 (2004).

    Article  CAS  Google Scholar 

  5. P.K. Song, M. Watanabe, M. Kon, A. Mitsui, and Y. Shigesato: Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering. Thin Solid Films 411, 82 (2002).

    Article  CAS  Google Scholar 

  6. J. Hu and R.G. Gordon: Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells. Sol. Cells 30, 437 (1991).

    Article  CAS  Google Scholar 

  7. M. Krunks and E. Mellikov: Zinc oxide thin films by the spray pyrolysis method. Thin Solid Films 270, 33 (1995).

    Article  CAS  Google Scholar 

  8. T. Schuler and M.A. Aegerter: Optical, electrical and structural properties of sol gel ZnO:Al coatings. Thin Solid Films 351, 125 (1999).

    Article  CAS  Google Scholar 

  9. R.E. Marotti, D.N. Guerra, C. Bello, G. Machado, and E.A. Dalchiele: Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential. Sol. Energy Mater. Sol. Cells 82, 85 (2004).

    Article  CAS  Google Scholar 

  10. O. Kluth, G. Schöpe, J. Hüpkes, C. Agashe, J. Müller, and B. Rech: Modified Thornton model for magnetron sputtered zinc oxide: Film structure and etching behaviour. Thin Solid Films 442, 80 (2003).

    Article  CAS  Google Scholar 

  11. S.T. Shishiyanu, T.S. Shishiyanu, and O.I. Lupan: Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sens. Actuators, B 107, 379 (2005).

    Article  CAS  Google Scholar 

  12. E. Suvaci and İ.Ö. Özer: Processing of textured zinc oxide varistors via templated grain growth. J. Eur. Ceram. Soc. 25, 1663 (2005).

    Article  CAS  Google Scholar 

  13. T. Meron and G. Markovich: Ferromagnetism in colloidal Mn2+-doped ZnO nanocrystals. J. Phys. Chem. B. 109, 20232 (2005).

    Article  CAS  Google Scholar 

  14. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen: ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth 225, 110 (2001).

    Article  CAS  Google Scholar 

  15. N.W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu: Epitaxial ZnO piezoelectric thin films for saw filters. Mater. Sci. Semicond. Process. 2, 247 (1999).

    Article  CAS  Google Scholar 

  16. N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto: Low-temperature fabrication of light-emitting zinc oxide micropatterns using self-assembled monolayers. Adv. Mater. 14, 418 (2002).

    Article  CAS  Google Scholar 

  17. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).

    Article  CAS  Google Scholar 

  18. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner: Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 50, 293 (2005).

    Article  CAS  Google Scholar 

  19. M. Hiramatsu, K. Imaeda, N. Horio, and M. Nawata: Transparent conducting ZnO thin films prepared by XeCl excimer laser ablation. J. Vac. Sci. Technol., A 16, 669 (1998).

    Article  CAS  Google Scholar 

  20. M. Joseph, H. Tabata, and T. Kawai: Ferroelectric behavior of Li-doped ZnO thin films on Si(100) by pulsed laser deposition. Appl. Phys. Lett. 74, 2534 (1999).

    Article  CAS  Google Scholar 

  21. Z.Q. Xu, H. Deng, Y. Li, and H. Cheng: Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO:Al thin films. Mater. Sci. Semicond. Process. 9, 132 (2006).

    Article  CAS  Google Scholar 

  22. S.Y. Kuo, W.C. Chen, F.I. Lai, C.P. Cheng, H.C. Kuo, S.C. Wang, and W.F. Hsieh: Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J. Cryst. Growth 287, 78 (2006).

    Article  CAS  Google Scholar 

  23. A. Verma, F. Khan, D. Kumar, M. Kar, B.C. Chakravarty, S.N. Singh, and M. Husain: Sol–gel derived aluminum doped zinc oxide for application as anti-reflection coating in terrestrial silicon solar cells. Thin Solid Films 518, 2649 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Council of Scientific & Industrial Research (AV) is gratefully acknowledged. The authors also wish to thank Dr. S.K. Srivastava for electrical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Verma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, A., Vijayan, N. Sol–gel-derived nanocrystalline aluminum-doped zinc oxide thin films for use as antireflection coatings in silicon solar cells. Journal of Materials Research 28, 2990–2995 (2013). https://doi.org/10.1557/jmr.2013.273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.273

Navigation