Skip to main content
Log in

Effect of addition of primary tungsten carbide on the properties of ferrotungsten and carbon black powders during mechanical alloying process

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, the effect of the addition of tungsten carbide on the behavior of Fe–WC system during the mechanical alloying (MA) process has been investigated. For this purpose, raw materials containing industrial ferrotungsten and carbon black with a bit of tungsten carbide powder were milled in a high energy ball mill, and sampling was done at different times. An XRD instrument was used for estimating the probable transformation of phases and properties in the milled sample. Microstructures of specimens were studied using electron microscopy. Results showed that MA even at high milling time could not transform raw materials to other materials in a system containing ferrotungsten and carbon black. In samples with primary tungsten carbide, this was synthesized gradually at a milling time of more than 75 h, and finally, the Fe–WC composite was produced as the final product. Crystalline sizes of the synthesized carbide were in nanometer order that was confirmed by transmission electron microscopy images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. A. Mortensen and J. Llorca: Metal matrix composites. Annu. Rev. Mater. Res. 40, 243 (2010).

    Article  CAS  Google Scholar 

  2. K. Dash, B.C. Ray, and D. Chaira: Synthesis and characterization of copper–alumina metal matrix composite by conventional and spark plasma sintering. J. Alloys Compd. 516, 78 (2012).

    Article  CAS  Google Scholar 

  3. G. Fan and Y. Sun: Effect of pressure on the solidification behavior and mechanical properties of SiCp/Al-Mg composites. J. Wuhan Uni. Technol. - Mater. Sci. Ed. 28(2), 274 (2013).

    Article  Google Scholar 

  4. R. Gautam, S. Ray, S.C. Sharma, S. Jain, and R. Tyagi: Dry sliding wear behavior of hot forged and annealed Cu–Cr–graphite in-situ composites. Wear 271(5), 658 (2011).

    Article  CAS  Google Scholar 

  5. A. Miserez, R. Müller, A. Rossoll, L. Weber, and A. Mortensen: Particle reinforced metals of high ceramic content. Mater. Sci. Eng., A 387, 822 (2004).

    Article  Google Scholar 

  6. A. Evans, C. San Marchi, and A. Mortensen: Metal Matrix Composites in Industry: An Introduction and a Survey (Springer, New York, NY, 2003).

    Book  Google Scholar 

  7. K.S. Tun and M. Gupta: Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method. Compos. Sci. Technol. 67(13), 2657 (2007).

    Article  CAS  Google Scholar 

  8. N. Chawla and K. Chawla: Metal-matrix composites in ground transportation. JOM 58(11), 67 (2006).

    Article  CAS  Google Scholar 

  9. W. Pedersen and M. Ramulu: Facing SiCp/Mg metal matrix composites with carbide tools. J. Mater. Process. Technol. 172(3), 417 (2006).

    Article  CAS  Google Scholar 

  10. D. Miracle: Metal matrix composites–from science to technological significance. Compos. Sci. Technol. 65(15), 2526 (2005).

    Article  CAS  Google Scholar 

  11. G. Constantinides, K. Ravi Chandran, F-J. Ulm, and K. Van Vliet: Grid indentation analysis of composite microstructure and mechanics: Principles and validation. Mater. Sci. Eng., A 430(1), 189 (2006).

    Article  Google Scholar 

  12. T.H. Nam, G. Requena, and P. Degischer: Thermal expansion behaviour of aluminum matrix composites with densely packed SiC particles. Composites Part A 39(5), 856 (2008).

    Article  Google Scholar 

  13. T.G. Ryu, H.Y. Sohn, K.S. Hwang, and Z.Z. Fang: Tungsten carbide nanopowder by plasma-assisted chemical vapor synthesis from WCl6-CH4-H2 mixtures. J. Mater. Sci. 43(15), 5185 (2008).

    Article  CAS  Google Scholar 

  14. R. Lu, L. Minarro, Y.Y. Su, and R.M. Shemenski: Failure mechanism of cemented tungsten carbide dies in wet drawing process of steel cord filament. Int. J. Refract. Met. Hard Mater. 26(6), 589 (2008).

    Article  CAS  Google Scholar 

  15. P-H. Gao, Y-G. Li, C-J. Li, G-J. Yang, and C-X. Li: Influence of powder porous structure on the deposition behavior of cold-sprayed WC-12Co coatings. J. Therm. Spray Technol. 17(5–6), 742 (2008).

    Article  CAS  Google Scholar 

  16. Y.V. Milman, S. Luyckx, V. Goncharuck, and J. Northrop: Results from bending tests on submicron and micron WC–Co grades at elevated temperatures. Int. J. Refract. Met. Hard Mater. 20(1), 71 (2002).

    Article  CAS  Google Scholar 

  17. P-H. Gao, C-J. Li, G-J. Yang, Y-G. Li, and C-X. Li: Influence of substrate hardness transition on built-up of nanostructured WC–12Co by cold spraying. Appl. Surf. Sci. 256(7), 2263 (2010).

    Article  CAS  Google Scholar 

  18. J. Zhang, G. Zhang, S. Zhao, and X. Song: Binder-free WC bulk synthesized by spark plasma sintering. J Alloys Compd. 479(1), 427 (2009).

    Article  CAS  Google Scholar 

  19. E. Marui, H. Endo, and A. Ohira: Wear test of cemented tungsten carbide at high atmospheric temperature (400 °C). Tribol. Lett. 8(2–3), 139 (2000).

    Article  CAS  Google Scholar 

  20. Z. Lin, L. Wang, J. Zhang, H-K. Mao, and Y. Zhao: Nanocrystalline tungsten carbide: As incompressible as diamond. Appl. Phys. Lett. 95(21), 211906 (2009).

    Article  Google Scholar 

  21. D-H. Xiao, Y-H. He, W-H. Luo, and M. Song: Effect of VC and NbC additions on microstructure and properties of ultrafine WC-10Co cemented carbides. Trans. Nonferrous Met. Soc. China 19(6), 1520 (2009).

    Article  CAS  Google Scholar 

  22. T. Klünsner, S. Marsoner, R. Ebner, R. Pippan, J. Glätzle, and A. Püschel: Effect of microstructure on fatigue properties of WC-Co hard metals. Procedia Eng. 2(1), 2001 (2010).

    Article  Google Scholar 

  23. S. Zhou and X. Dai: Microstructure evolution of Fe-based WC composite coating prepared by laser induction hybrid rapid cladding. Appl. Surf. Sci. 256(24), 7395 (2010).

    Article  CAS  Google Scholar 

  24. C.M. Fernandes, A.M.R. Senos, and M.T. Vieira: Sintering of tungsten carbide particles sputter-deposited with stainless steel. Int. J. Refract. Met. Hard Mater. 21(3–4), 147 (2003).

    Article  CAS  Google Scholar 

  25. X.Q. You, C.J. Zhang, X.F. Song, M.P. Huang, and J.G. Ma: Microstructure evolution of WC/steel composite by laser surface re-melting. Appl. Surf. Sci. 253(9), 4409 (2007).

    Article  CAS  Google Scholar 

  26. Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, and H. Sohn: Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide–a review. Int. J. Refract. Met. Hard Mater. 27(2), 288 (2009).

    Article  CAS  Google Scholar 

  27. Powder Metallurgy Technologies and Applications, 10th ed. (ASM International, 1990).

  28. T. Ryu, M. Olivas-Martinez, H.Y. Sohn, Z. Fang, and T.A. Ring: Computational fluid dynamics simulation of chemical vapor synthesis of WC nanopowder from tungsten hexachloride. Chem. Eng. Sci. 65(5), 1773 (2010).

    Article  CAS  Google Scholar 

  29. P.W. Lee, Y. Trudel, R.M. German, B.L. Ferguson, W.B. Eisen, K. Mover, D. Madan, H. Sanderow, S.R. Lampman, and G.M. Davidson: Powder metal technologies and applications, 10th ed. (ASM International, Materials Park, OH, 1990).

    Google Scholar 

  30. S.A. Hewitt and K.A. Kibble: Effects of ball milling time on the synthesis and consolidation of nanostructured WC–Co composites. Int. J. Refract. Met. Hard Mater. 27(6), 937 (2009).

    Article  CAS  Google Scholar 

  31. M. Razavi, M.R. Rahimipour, and R. Yazdani-Rad: A novel technique for production of nano-crystalline mono tungsten carbide single phase via mechanical alloying. J. Alloys Compd. 509(23), 6683 (2011).

    Article  CAS  Google Scholar 

  32. M. Razavi, M. Rahimipour, and R. Yazdani-Rad: Synthesis of Fe-WC nanocomposite from industrial ferrotungsten via mechanical alloying method. Adv. Appl. Ceram. 110(6), 367 (2011).

    Article  CAS  Google Scholar 

  33. A. Standard: Method for Determination of Tap Density of Metallic Powders and Compounds (ASTM International, West Conshohocken, PA, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Razavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razavi, M. Effect of addition of primary tungsten carbide on the properties of ferrotungsten and carbon black powders during mechanical alloying process. Journal of Materials Research 28, 2996–3002 (2013). https://doi.org/10.1557/jmr.2013.269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.269

Navigation