Skip to main content

Advertisement

Log in

Electrochemical and kinetic study of as-cast and as-quench Mg2Ni-type hydrogen storage alloys

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To improve the electrochemical and kinetic performances of the Mg2Ni-type hydrogen storage alloys, Mg was partially substituted by La, and the rapid solidification technology was used for the preparation of Mg20−xLaxNi10 (x = 0, 2, 4, 6) alloys. The microstructures of the as-cast Mg20−xLaxNi10 (x = 0, 2, 4, 6) and as-spun Mg20−xLaxNi10 (x = 2) alloys were systematically studied through x-ray diffraction and high-resolution transmission electronic microscopy. Electrochemical hydrogen storage properties were measured by the automatic galvanostatic system. Electrochemical impedance spectrum, linear polarization, and step-potential discharge curves were plotted using electrochemical workstation. The results showed that substitution of La for Mg was helpful for forming multiphase structures, increasing the discharge capacity of the as-cast Mg20−xLaxNi10 (x = 0, 2, 4, 6) alloys. The increasing quenching rate facilitated the formation of amorphous and nanocrystalline structures of Mg18La2Ni10 (La2) alloy, effectively improving the electrochemical and kinetic properties of Mg18La2Ni10 (La2) alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE II.
TABLE III.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. D. Lupu, A. Biris, and E. Indrea: Hydrogen absorption in beryllium substituted Mg2Ni. Int. J. Hydrogen Energy 7, 783 (1982).

    Article  CAS  Google Scholar 

  2. L. Zaluski, A. Zaluska, P. Tessier, J-Q. Srom-Olsen, and R. Schudz: Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi. J. Alloys Compd. 217, 295 (1995).

    Article  CAS  Google Scholar 

  3. J-F. Fernandez, J. Bodega, and C-R. Sanchez: Hydriding/dehydriding properties of Mg–ZrCr2 composites. J. Alloys Compd. 356–357, 343 (2003).

    Article  Google Scholar 

  4. S. Orimo, H. Fujii, and M. Tabatu: Synthesis of fine composite particles for hydrogen storage, starting from Mg-YNi2 mixture. J. Alloys Compd. 210, 37 (1994).

    Article  CAS  Google Scholar 

  5. R. Janot, X. Darok, A. Rougier, L. Aymard, G-A. Nazri, and J-M. Tarascon: Hydrogen sorption properties for surface treated MgH2 and Mg2Ni alloys. J. Alloys Compd. 404–406, 293 (2005).

    Article  Google Scholar 

  6. B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher: Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 32, 1121 (2007).

    Article  CAS  Google Scholar 

  7. Y-Q. Lei, Y-M. Wu, Q-M. Yang, J Wu, and Q-D. Wang: Electrochemical behaviour of some mechanically alloyed Mg-Ni-Based amorphous hydrogen storage alloys. Z. Phys. Chem. 183, 379 (1994).

    Article  CAS  Google Scholar 

  8. T. Kohno, M. Yamamoto, and M. Kanda: Electrochemical properties of mechanically ground Mg2Ni alloy. J. Electrochem. Soc. 293–295, 643 (1992).

    Google Scholar 

  9. A. Gasiorowski, W. Iwasieczbo, and D. Skoryna: Hydriding properties of nanocrystalline Mg2-xMxNi alloys synthesized by mechanical alloying(M=Mn, Al). J. Alloys Compd. 364, 283 (2004).

    Article  CAS  Google Scholar 

  10. G. Liang: Synthesis and hydrogen storage properties of Mg-based alloys. J. Alloys Compd. 370, 123 (2004).

    Article  CAS  Google Scholar 

  11. L-J. Huang, G-Y. Liang, Z-B. Sun, and Y-F. Zhou: Nanocrystallization and hydriding properties of amorphous melt-spun Mg65Cu25Nd10 alloy. J. Alloys Compd. 432, 172 (2007).

    Article  CAS  Google Scholar 

  12. M. Naka, K. Hashimoto, and T. Masumoto: Corrosion resistance of amorphous iron alloys containing chromium. J. Jpn. Inst. Met. 38, 835 (1974).

    Article  CAS  Google Scholar 

  13. L-J. Huang, G-Y. Liang, Z-B. Sun, and D-C. Wu: Electrode properties of melt-spun Mg–Ni–Nd amorphous alloys. J. Power Sources 160, 684 (2006).

    Article  CAS  Google Scholar 

  14. Y-H. Zhang, S-H. Guo, Y. Qi, X. Li, Z-H. Ma, and Y. Zhang: Enhanced electrochemical characteristics of as-spun nanocrystalline and amorphous Mg2Ni-type alloy electrodes. J. Alloys Compd. 506, 749 (2010).

    Article  CAS  Google Scholar 

  15. T. Spassov and U Köster: Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy. J. Alloys Compd. 279, 279 (1998).

    Article  CAS  Google Scholar 

  16. Y-H. Zhang, D-L. Zhao, H-P. Ren, S-H. Guo, and X-L. Wang: Hydriding and dehydriding characteristics of nanocrystalline and amorphous Mg20–xLaxNi10(x=0–6) alloys prepared by melt-spinning. J. Rare Earths 27, 514 (2009).

    Article  CAS  Google Scholar 

  17. D-H. Xie, P. Li, C-X. Zeng, J-W. Sun, and X-H. Qu: Effect of substitution of Nd for Mg on the hydrogen storage properties of Mg2Ni alloy. J. Alloys Compd. 478, 96 (2009).

    Article  CAS  Google Scholar 

  18. Y-H. Zhang, Y. Cai, Y. Wang, H-P. Ren, S-H. Guo, and D-L. Zhao: Electrochemical hydrogen storage properties of as-spun nanocrystalline/amorphous Mg2-xLaxNi (x=0-0.6). J. Funct. Mater. 42, 2200 (2011).

    CAS  Google Scholar 

  19. F. Izumi: The Rietveld Method (Oxford University Press, Oxford, England, 1993), p. 573, 645.

    Google Scholar 

  20. H. Niu and D.O. Northwood: Enhanced electrochemical properties of ball-milled Mg2Ni electrodes. Int. J. Hydrogen Energy 27, 69 (2002).

    Article  CAS  Google Scholar 

  21. Y-H. Zhang, B-W. Li, H-P. Ren, Y. Cai, X-P. Dong, and X-L. Wang: Investigation on structures and electrochemical performances of the as-cast and -quenched La0.7Mg0.3Co0.45Ni2.55-xFex(x=0-0.4) electrode alloys. Int. J. Hydrogen Energy 32, 4627 (2007).

    Article  CAS  Google Scholar 

  22. W-L. Zhang, M-P-S. Kumar, S. Srinivasan, and H-J. Ploehn: AC Impedance studies on metal hydride electrodes TECHNICAL PAPERS - Electrochemical science and technology. J. Electrochem Soc. 142, 2935 (1995).

    Article  CAS  Google Scholar 

  23. Y. Sakamoto, K. Kuruma, Y. Naritomi, and B. Bunsenges: Electrochemical hydrogen charge characteristics of metal hydride electrodes. Phys. Chem. 96, 1813 (1992).

    CAS  Google Scholar 

  24. B-V. Ratnakumar, C. Witham Jr., R-C. Bowman, A. Hightower, and B. Fultz: Electrochemical studies on LaNi5-xSnx metal hydride alloys. J. Electrochem. Soc. 143, 2578 (1996).

    Article  CAS  Google Scholar 

  25. N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, and T. Iwasaki: Electrochemical impedance and deterioration behavior of metal hydride electrodes. J. Alloys Compd. 202, 183 (1993).

    Article  CAS  Google Scholar 

  26. P-H-L. Notten and P. Hokkeling: Double-phase hydride forming compounds: A new class of highly electrocatalytic materials. J. Electrochem. Soc. 138, 1877 (1991).

    Article  CAS  Google Scholar 

  27. T. Nishina, H. Ura, and I. Uchida: Determination of chemical diffusion coefficients in metal hydride particles with a microelectrode technique. J. Electrochem. Soc. 144(4), 1273 (1997).

    Article  CAS  Google Scholar 

  28. G. Zhang, B-N. Popov, and R-E. While: Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution. J. Electrochem. Soc. 142, 2695 (1995).

    Article  Google Scholar 

  29. Y. Wu, W Han, S-X. Zhou, M-V. Lototsky, J-K. Solberg, and V-A. Yartys: Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg–10Ni–2Mm alloys. J. Alloys Compd. 466, 176 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, F., Zhang, Y., Zhang, Y. et al. Electrochemical and kinetic study of as-cast and as-quench Mg2Ni-type hydrogen storage alloys. Journal of Materials Research 28, 2701–2708 (2013). https://doi.org/10.1557/jmr.2013.258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.258

Navigation