Abstract
Nano- and micron-sized metal particles have important applications in catalysis and in the medical and electronic industries. For applications requiring high conductivity, such as thick film conductive pastes or isotropic conductive adhesives, AgCu particles combine high conductivity with advantages of lower costs. Here, we report the generation of AgCu particles by spray pyrolysis, a process that has the advantages of simple experimental setup, large-scale production ability, and controllable particle size. Solutions of copper nitrate and silver nitrate dissolved in deionized water with either 40 vol% ethanol (ET) or 40 vol% ethylene glycol (EG) were used as the precursor. Phase separation was observed during the generation of AgCu particles, and the particles were mainly Ag-rich and Cu-rich solid solutions. The short reactor residence time experiments indicated that both the cosolvent properties and operating conditions affect the particle formation process and change the structure of particles.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
L. Lewis: Chemical catalysis by colloids and clusters. Chem. Rev. 93(8), 2693 (1993).
S. Link and M. El-Sayed: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103(40), 8410 (1999).
F. Watari, A. Yokoyama, M. Omori, T. Hirai, H. Kondo, M. Uo, and T. Kawasaki: Biocompatibility of materials and development to functionally graded implant for bio-medical application. Compos. Sci. Technol. 64(6), 893 (2004).
L. Sheppard: Progress continues in capacitor technology. Am. Ceram. Soc. Bull. 72(3), 45 (1993).
S.J. Kim, E.A. Stach, and C.A. Handwerker: Fabrication of conductive interconnects by Ag migration in Cu-Ag core-shell nanoparticles. Appl. Phys. Lett. 96(14), 144101 (2010).
M.J. Yim, Y. Li, K.S. Moon, and C.P. Wong: High performance anisotropic conductive adhesives using copper particles with an anti-oxidant coating layer. J. Electron. Packag. 132(1), 011007 (2010).
Y. Tao, Y. Xia, H. Wang, F.H. Gong, H.P. Wu, and G.L. Tao: Novel isotropical conductive adhesives for electronic packaging application. IEEE Trans. Adv. Packag. 32(3), 589 (2009).
D.D. Lu and C.P. Wong: Recent advances in developing high performance isotropic conductive adhesives. J. Adhes. Sci. Technol. 22(8–9), 835 (2008).
J. Liu, X. Li, and X. Zeng: Silver nanoparticles prepared by chemical reduction-protection method, and their application in electrically conductive silver nanopaste. J. Alloys Compd. 494(1–2), 84 (2010).
S. Kang and S. Purushothaman: Development of conducting adhesive materials for microelectronic applications. J. Electron. Mater. 28(11), 1314 (1999).
H.P. Wu, X.J. Wu, M.Y. Ge, G.Q. Zhang, Y.W. Wang, and J.Z. Jiang: Properties investigation on isotropical conductive adhesives filled with silver coated carbon nanotubes. Compos. Sci. Technol. 67(6), 1182 (2007).
J. Speight: Lange’s Handbook of Chemistry, 70th Anniversary Edition, 16th ed. (McGraw-Hill Professional, New York, 2004).
A. Gurav, T. Kodas, T. Pluym, and Y. Xiong: Aerosol processing of materials. Aerosol Sci. Technol. 19(4), 411 (1993).
S. Gurmen, B. Ebin, S. Stopic, and B. Friedrich: Nanocrystalline spherical iron-nickel (Fe-Ni) alloy particles prepared by ultrasonic spray pyrolysis and hydrogen reduction (USP-HR). J. Alloys Compd. 480(2), 529 (2009).
S. Eroglu, S.C. Zhang, and G.L. Messing: Synthesis of nanocrystalline Ni-Fe alloy powders by spray pyrolysis. J. Mater. Res. 11(9), 2131 (1996).
T. Pluymt, T. Kodas, L. Wang, and H. Glicksman: Silver-palladium alloy particle production by spray pyrolysis. J. Mater. Res. 10(7), 1661 (1995).
N. Aoyagi, T. Ookawa, R. Ueyama, N. Ogata, and T. Ogihara: Preparation of Ag-Pd alloy particles by ultrasonic spray pyrolysis and application to electrode for LTCC. Electroceramics in Japan VI 248, 187 (2003).
C. Jung, H. Lee, C. Kim, and S. Bhaduri: Synthesis of Cu-Ni alloy powder directly from metal salts solution. J. Nanopart. Res. 5(3–4), 383 (2003).
S.Y. Yang, K. Kim, and S.G. Kim: Reductive crystallization of each metal in composite particles spray-pyrolyzed from silver/nickel mixed nitrates. Korean J. Chem. Eng. 25(2), 359 (2008).
H.C. Jang, S.H. Ju, and Y.C. Kang: Spherical shape Ni-Co alloy powders directly prepared by spray pyrolysis. J. Alloys Compd. 478(1–2), 206 (2009).
S.H. Ju, H.C. Jang, Y.C. Kang, and D.W. Kim: Characteristics of Sn-Ni alloy powders directly prepared by spray pyrolysis. J. Alloys Compd. 478(1–2), 177 (2009).
J.H. Kim, V.I. Babushok, T.A. Germer, G.W. Mulholland, and S.H. Ehrman: Cosolvent-assisted spray pyrolysis for the generation of metal particles. J. Mater. Res. 18(7), 1614 (2003).
K. Zhong, G. Peabody, H. Glicksman, and S. Ehrman: Particle generation by cosolvent spray pyrolysis: Effects of ethanol and ethylene glycol. J. Mater. Res. 27(19), 2540 (2012).
B. Xia, I.W. Lenggoro, and K. Okuyama: The roles of ammonia and ammonium bicarbonate in the preparation of nickel particles from nickel chloride. J. Mater. Res. 15(10), 2157 (2000).
B. Xia, I. Lenggoro, and K. Okuyama: Preparation of Ni particles by ultrasonic spray pyrolysis of NiCl2·6H2O precursor containing ammonia. J. Mater. Sci. 36(7), 1701 (2001).
K.N. Kim and S.G. Kim: Nickel particles prepared from nickel nitrate with and without urea by spray pyrolysis. Powder Technol. 145(3), 155 (2004).
V. Jokanovic, B. Colovic, S. Stopic, and B. Friedrich: Designing of copper nanoparticle size formed via aerosol pyrolysis. Metall. Mater. Trans. A 43(11), 4427 (2012).
G. Jian, L. Liu, and M.R. Zachariah: Facile aerosol route to hollow CuO spheres and its superior performance as an oxidizer in nanoenergetic gas generators. Adv. Funct. Mater. 23(10), 1341 (2013).
K.L. Tsai and J.L. Dye: Nanoscale metal particles by homogeneous reduction with alkalides or electrides. J. Am. Chem. Soc. 113(5), 1650 (1991).
H. Hirai, Y. Nakao, and N. Toshima: Colloidal rhodium in poly(vinylpyrrolidone) as hydrogenation catalyst for internal olefins. Chem. Lett. 7(5), 545 (1978).
L. Kurihara, G. Chow, and P. Schoen: Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct. Mater. 5(6), 607 (1995).
F. Fievet, F. Fievetvincent, J. Lagier, B. Dumont, and M. Figlarz: Controlled nucleation and growth of micrometer size copper particles prepared by the polyol process. J. Mater. Chem. 3(6), 627 (1993).
G. Cardenas-Trivino, K.J. Klabunde, and E.B. Dale: Living colloidal palladium in nonaqueous solvents. Formation, stability, and film-forming properties. Clustering of metal atoms in organic media. 14. Langmuir 3(6), 986 (1987).
N. Satoh and K. Kimura: Metal colloids produced by means of gas evaporation technique. 5. Colloidal dispersion of Au fine particles to hexane, poor dispersion medium for metal sol. Bull. Chem. Soc. Jpn. 62(6), 1758 (1989).
S. Jain, D.J. Skamser, and T.T. Kodas: Morphology of single-component particles produced by spray pyrolysis. Aerosol Sci. Technol. 27(5), 575 (1997).
D. Majumdar, T.A. Shefelbine, T.T. Kodas, and H.D. Glicksman: Copper (I) oxide powder generation by spray pyrolysis. J. Mater. Res. 11(11), 2861 (1996).
K. Nagashima, T. Iwaida, H. Sasaki, Y. Katatae, and A. Kato: Preparation of fine, spherical copper particles by spray pyrolysis technique. Nippon Kagaku Kaishi 1, 17 (1990).
K. Zhong, G. Peabody, E. Blankenhorna, H. Glicksman, and S. Ehrman: A spray pyrolysis approach for the generation of patchy particles. Aerosol Sci. Technol. 47(2), 1 (2013).
A.G. Venetsanos, P. Adams, and I. Azkarate: On the use of hydrogen in confined spaces: Results from the internal project InsHyde. Int. J. Hydrogen Energy 36(3), 2693 (2011).
H. Okamoto: Desk Handbook: Phase Diagrams for Binary Alloys (ASM International, Materials Park, OH, 2000).
H.R. Pruppacher and J.D. Klett: Microphysics of Clouds and Precipitation (Springer, New York, 1996).
S.K. Friedlander: Smoke, dust, and haze: Fundamentals of aerosol behavior (Wiley, Hoboken, NJ, 1977).
J. Yang, T.C. Deivaraj, H.P. Too, and J.Y. Lee: Acetate stabilization of metal nanoparticles and its role in the preparation of metal nanoparticles in ethylene glycol. Langmuir 20(10), 4241 (2004).
F. Fievet, J. Lagier, B. Blin, B. Beaudoin, and M. Figlarz: Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and sub-micron size metal particles. Solid State Ionics 32–33, 198 (1989).
B. Lvov and A. Novichikhin: Mechanism of thermal decomposition of hydrated copper nitrate in vacuo. Spectrochim. Acta, Part B 50(12), 1459 (1995).
J. Jackson, R. Fonseca, and J. Holcombe: Mass spectral studies of thermal decomposition of metal nitrates. Spectrochim. Acta, Part B 50(12), 1449 (1995).
Acknowledgments
This work was supported by the National Science Foundation (Grant No. CBET-0755703) and by the DuPont Company. We also acknowledge the support of the Maryland NanoCenter and its NispLab. The NispLab is supported in part by the National Science Foundation as a Materials Research Science and Engineering Center Shared Experimental Facility. E.B. acknowledges support from MTECH ASPIRE Program.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Zhong, K., Peabody, G., Blankenhorn, E. et al. Spray pyrolysis of phase pure AgCu particles using organic cosolvents. Journal of Materials Research 28, 2753–2761 (2013). https://doi.org/10.1557/jmr.2013.257
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2013.257