Skip to main content
Log in

Atomistic modeling of Co–Al compounds

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structural properties, the formation enthalpies, and the mechanical properties of Co–Al compounds (CoAl, CoAl3, Co3Al, Co2Al5, Co2Al9, and Co4Al13) are studied by using Chen’s lattice inversion embedded-atom method. The potential is transferable and therefore does well for studying different Co–Al compounds. The calculated lattice parameters and cohesive energies are consistent with the experimental and theoretical results. The formation enthalpies of all the Co–Al compounds are negative; therefore, the chemical bonding between Co and Al atoms increases the stability of compounds. According to elastic constant restrictions, all the six Co–Al compounds are mechanically stable. CoAl alloy with the larger moduli and lower Poisson’s ratio is the hard or brittle phase. Moreover, CoAl3, Co3Al, Co2Al5, and Co2Al9 alloys are considered to be ductile materials, which have lower ratio of shear modulus to bulk modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
TABLE II.
FIG. 1.
TABLE III.
TABLE IV.
FIG. 2.

Similar content being viewed by others

References

  1. W. Steurer: Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Z. Kristallogr. 219, 391 (2004).

    CAS  Google Scholar 

  2. F. Fleischer, T. Weber, D.Y. Jung, and W. Steurer: s-Al13Co4, a new quasicrystal approximant. J. Alloys Compd. 500, 153 (2010).

    CAS  Google Scholar 

  3. M. Heggen, D.W. Deng, and M. Feuerbacher: Plastic deformation properties of the orthorhombic complex metallic alloy phase Al13Co4. Intermetallics 15, 1425 (2007).

    CAS  Google Scholar 

  4. M. Mihalkovic and M. Widom: First-principles calculations of cohesive energies in the Al-Co binary alloy system. Phys. Rev. B 75, 014207 (2007).

    Google Scholar 

  5. M. Mizuno, H. Araki, and Y. Shirai: Energetics and structural relaxation of constitutional defects in CoAl and CoTi from first principles. Phys. Rev. B 68, 144103 (2003).

    Google Scholar 

  6. C. Bergman, C. Girardeaux, C. Perrin-Pellegrino, P. Gas, D. Chatain, J.M. Dubois, and N. Rivier: Wetting of decagonal Al13Co4 and cubic AlCo thin films by liquid Pb. Philos. Mag. 86, 849 (2006).

    CAS  Google Scholar 

  7. M. Heggen, L. Houben, and M. Feuerbacher: Metadislocations in the structurally complex orthorhombic alloy Al13Co4. Philos. Mag. 88, 2333 (2008).

    CAS  Google Scholar 

  8. J. Dolinšek, M. Komelj, P. Jeglic, S. Vrtnik, D. Stanic, P. Popcevic, J. Ivkov, A. Smontara, Z. Jaglicic, and P. Gille: Anisotropic magnetic and transport properties of orthorhombic Al13Co4. Phys. Rev. B 79, 184201 (2009).

    Google Scholar 

  9. H-Z. Luo, Z-Y. Zhu, L. Ma, S-F. Xu, G-H. Wu, H-Y. Liu, J-P. Qu, Y-X. Li, X-X. Zhu, C-B. Jiang, and H-B. Xu: Effect of Cr on the electronic structure of Co3Al intermetallic compound: A first-principles study. J. Magn. Magn. Mater. 320, 1345 (2008).

    CAS  Google Scholar 

  10. V.K. Portnoi, K.V. Tretyakov, and V.I. Fadeeva: Structural transformations during the mechanochemical synthesis and heating of Co-Al Alloys. Inorg. Mater. 40, 937 (2004).

    CAS  Google Scholar 

  11. G.V. Golubkova, O.I. Lomovsky, Y.S. Kwon, A.A. Vlasov, and A.L. Chuvilin: Formation of nanocrystalline structures in a Co-Al system by mechanical alloying and leaching. J. Alloys Compd. 351, 101 (2003).

    CAS  Google Scholar 

  12. A. Ormeci and Y. Grin: Chemical bonding in Al5Co2: The electron localizability-electron density approach. Isr. J. Chem. 51, 1349 (2011).

    CAS  Google Scholar 

  13. V.K. Portnoi, K.V. Tretyakov, V.I. Fadeeva, and J. Latuch: Effects of liquid quenching and subsequent heating on the structure of Co-Al Alloys. Inorg. Mater. 41, 350 (2005).

    CAS  Google Scholar 

  14. C. Vailhé and D. Farkas: Shear faults and dislocation core structures in B2 CoAl. J. Mater. Res. 12, 2559 (1997).

    Google Scholar 

  15. B-W. Zhang, W-Y. Hu, and X-L. Su: Theory of Embedded Atom Method and its Application to Materials Science-atomic Scale Materials Design Theory (Hunan University Press, Hunan, China, 2003), p. 397.

    Google Scholar 

  16. W-P. Dong, H-K. Kim, W-S. Ko, B-M. Lee, and B-J. Lee: Atomistic modeling of pure Co and Co-Al system. Calphad 38, 7 (2012).

    CAS  Google Scholar 

  17. C-H. Zhang, J-J. Han, S. Huang, and J. Shen: Chen’s lattice inversion embedded-atom method for FCC metal. Adv. Mater. Res. 320, 415 (2011).

    CAS  Google Scholar 

  18. C-H. Zhang, S. Huang, J. Shen, and N-X. Chen: Chen’s lattice inversion embedded-atom method for Ni-Al alloy. Chin. Phys. B 21, 113401 (2012).

    Google Scholar 

  19. M.S. Daw and M.I. Baskes: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).

    CAS  Google Scholar 

  20. M.S. Daw and M.I. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).

    CAS  Google Scholar 

  21. P.M. Morse: Diatomic molecules according to the wave mechanics II. Vibrational levels. Phys. Rev. 34, 57 (1929).

    CAS  Google Scholar 

  22. A. Banerjea and J.R. Smith: Origins of the universal binding-energy relation. Phys. Rev: B, Condens. Matter 37, 6632 (1988).

    CAS  Google Scholar 

  23. J.K. Norskov and N.D. Lang: Effective-medium theory of chemical binding: Application to chemisorptions. Phys. Rev. B 21, 2131 (1980).

    Google Scholar 

  24. J.H. Rose, J.R. Smith, F. Guinea, and J. Ferrante: Universal features of the equation of state of metals. Phys. Rev. B 29, 2963 (1984).

    CAS  Google Scholar 

  25. N-X. Chen: Modified mobius inverse formula and its applications in physics. Phys. Rev. Lett. 64, 1193 (1990).

    CAS  Google Scholar 

  26. N-X. Chen, Z-D. Chen, and Y-C. Wei: Multidimensional inverse lattice problem and a uniformly sampled arithmetic fourier transform. Phys. Rev. E 55, R5 (1998).

    Google Scholar 

  27. S. Huang, C-H. Zhang, J. Sun, Y-P. Li, Z-F. Zhang, and J. Shen: Formation and migration mechanism of the vacancy in three typical structures metal. Appl. Phys. 2, 50 (2012).

    CAS  Google Scholar 

  28. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys: Condens. Matter 14, 2717 (2002).

    CAS  Google Scholar 

  29. P. Villars and L. Calvert: Pearson’s Handbook Desk Edition: Crystallographic Data for Intermetallic Phases, 2nd ed. (ASM International, Materials Park, OH, 1997), p. 135.

    Google Scholar 

  30. M.J. Cooper: An investigation of the ordering of the phases CoAl and NiAl. Philos. Mag. 8, 805 (1963).

    CAS  Google Scholar 

  31. R. Hultgren, P. Desai, D. Hawkins, N. Gleiser, and K. Kelly: Selected Values of Thermodynamic Properties of Binary Alloys (ASM International, Materials Park, OH, 1973), p. 214.

    Google Scholar 

  32. H.П. ЛЯКИШeB: Handbook of Binary Alloy Phase Diagrams (Beijing Chemical Industry Press, Beijing, China, 2009), p. 52.

    Google Scholar 

  33. O.L. Anderson: A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909 (1963).

    CAS  Google Scholar 

  34. J.D. Gale and A.L. Rohl: The general utility lattice program. Mol. Simul. 29, 291 (2003).

    CAS  Google Scholar 

  35. M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, and B.M. Klein: Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. Phys. Rev. B 41, 10311 (1990).

    CAS  Google Scholar 

  36. M.F. Grosso, H.O. Mosca, and G. Bozzolo: Thermal and physical properties of B2 Al-Ir-X (X = Ni, Ru, Pd, Co, Fe) alloys. Intermetallics 18, 945 (2010).

    Google Scholar 

  37. H. Ohtani, M. Yamano, and M. Hasebe: Thermodynamic analysis of the Co-Al-C and Ni-Al-C systems by incorporating ab initio energetic calculations into the CALPHAD approach. Calphad 28, 177 (2004).

    CAS  Google Scholar 

  38. M. Widom and J.A. Moriarty: First-principles interatomic potentials for transition-metal aluminides. II. Application to Al-Co and Al-Ni phase diagrams. Phys. Rev. B 58, 8967 (1998).

    CAS  Google Scholar 

  39. S.R. Broderick, H. Aourag, and K. Rajan: Data mining density of states spectra for crystal structure classification: An inverse problem approach. Stat. Anal. Data Min. 1, 353 (2009).

    Google Scholar 

  40. G. Trambly de Laissardiere, D. Nguyen Manh, L. Magaud, J.P. Julien, F. Cyrot-Lackmann, and D. Mayou: Electronic structure and hybridization effects in hume-rothery alloys containing transition elements. Phys. Rev. B 52, 7920 (1995).

    CAS  Google Scholar 

  41. J.B. Newkirk, P.J. Balck, and A. Damjanovic: The refinement of the Co2Al5 structures. Acta Crystallogr. 14, 532 (1961).

    CAS  Google Scholar 

  42. J.A. Moriarty and M. Widom: First-principles interatomic potentials for transition-metal aluminides: Theory and trends across the 3d series. Phys. Rev. B 56, 7905 (1997).

    CAS  Google Scholar 

  43. X-L. Ma and K-H. Kuo: Decagonal quasicrystal and related crystalline phases in slowly solidified Al-Co alloys. Metall. Mater. Trans. A 23, 1121 (1992).

    Google Scholar 

  44. R.C. Hudd and W.H. Taylor: The structure of Co4Al13. Acta Crystallogr. 15, 441 (1962).

    CAS  Google Scholar 

  45. J. Grin, U. Burkhardt, M. Ellner, and K. Peters: Crystal structure of orthorhombic Co4Al13. J. Alloys Compd. 206, 243 (1994).

    CAS  Google Scholar 

  46. J.F. Nye: Physical Properties of Crystals (Oxford University Press, Oxford, England, 1985), p. 85.

    Google Scholar 

  47. O. Beckstein, J.E. Klepeis, G.L.W. Hart, and O. Pankratov: First-principles elastic constants and electronic structure of a-Pt2Si and PtSi. Phys. Rev. B 63, 134112 (2001).

    Google Scholar 

  48. T. Tsuchiya, T. Yamanaka, and M. Matsui: Molecular dynamics study of pressure-induced transformation of quartz-type GeO2. Phys. Chem. Miner. 27, 149 (2000).

    CAS  Google Scholar 

  49. R.L. Fleischer: Substitutional solutes in AlRu-I. Effects of solute on moduli, lattice parameters and vacancy production. Acta Metall. Mater. 41, 863 (1993).

    CAS  Google Scholar 

  50. J. Haines, J.M. Leger, and G. Bocquillon: Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31, 1 (2001).

    CAS  Google Scholar 

  51. S.F. Pugh: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).

    CAS  Google Scholar 

  52. J. Schroers and W.L. Johnson: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).

    Google Scholar 

  53. K. Gschneidner, A. Russell, A. Pecharsky, J. Morris, Z. Zhang, T. Lograsso, D. Hsu, C.H. Lo, Y. Ye, A. Slager, and D. Kesse: A family of ductile intermetallic compounds. Nat. Mater. 2, 587 (2003).

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Basic Research Program of China under Grant No. 2011CB606400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, CH., Huang, S., Shen, J. et al. Atomistic modeling of Co–Al compounds. Journal of Materials Research 28, 2720–2727 (2013). https://doi.org/10.1557/jmr.2013.255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.255

Navigation