Skip to main content
Log in

Self-assembled block copolymer membranes: From basic research to large-scale manufacturing

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Order and porosity of block copolymer membranes have been controlled by solution thermodynamics, self-assembly, and macrophase separation. We have demonstrated how the film manufacture with long-range order can be up-scaled with the use of conventional membrane production technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. I. Prigogine and I. Stengers: Order Out of Chaos, Man’s New Dialogue with Nature (Bantam Books, Toronto, 1984).

    Google Scholar 

  2. C. Tang, E.M. Lennon, G.H. Friedrickson, E.J. Kramer, and C.J. Hawker: Evolution of block copolymer lithography to highly ordered square arrays. Science 322, 429–432 (2008).

    Article  CAS  Google Scholar 

  3. C.J. Hawker and T.P. Russell: Block copolymer lithography: Merging “bottom-up” with “top-down” processes. MRS Bull. 30, 952–966 (2005).

    Article  CAS  Google Scholar 

  4. C. Park, J. Yoon, and E.L. Thomas: Enabling nanotechnology with self assembled block copolymer patterns. Polymer 44, 6725–6760 (2003).

    Article  CAS  Google Scholar 

  5. M. O’Neill and S.M. Kelly: Ordered materials for organic electronics and photonics. Adv. Mater. 23, 566–584 (2011).

    Article  Google Scholar 

  6. J.M. Lehn: Toward self-organization and complex matter. Science 295, 2400–2403 (2002).

    Article  CAS  Google Scholar 

  7. J.M. Lehn: Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. 27, 89–112 (1988).

    Article  Google Scholar 

  8. O. Almarsson and M.J. Zaworotko: Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem. Commun. 17, 1889–1896 (2004).

    Article  Google Scholar 

  9. J.L.C. Rowsell and O.M. Yaghi: Metal–organic frameworks: A new class of porous materials. Microporous Mesoporous Mater. 73, 3–14 (2004).

    Article  CAS  Google Scholar 

  10. F.S. Bates, M.A. Hillmyer, T.P. Lodge, C.M. Bates, K.T. Delaney, and G.H. Fredrickson: Multiblock polymers: Panacea or pandora’s box? Science 336, 434–440 (2012).

    Article  CAS  Google Scholar 

  11. K.V. Peinemann, V. Abetz, and P.F.W. Simon: Asymmetric superstructure formed in a block copolymer via phase separation. Nat. Mater. 6, 992–996 (2007).

    Article  CAS  Google Scholar 

  12. S.P. Nunes, R. Sougrat, B. Hooghan, D.H. Anjum, A.R. Behzad, L. Zhao, N. Pradeep, I. Pinnau, U. Vainio, and K-V. Peinemann: Ultraporous films with uniform nanochannels by block copolymer micelles assembly. Macromolecules 43, 8079–8085 (2010).

    Article  CAS  Google Scholar 

  13. S.P. Nunes, A.R. Behzad, B. Hooghan, R. Sougrat, M. Karunakaran, N. Pradeep, U. Vainio, and K-V. Peinemann: Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly. ACS Nano 5, 3516–3522 (2011).

    Article  CAS  Google Scholar 

  14. S.P. Nunes, M. Karunakaran, N. Pradeep, A.R. Behzad, B. Hooghan, R. Sougrat, H. He, and K-V. Peinemann: From micelle supramolecular assemblies in selective solvents to isoporous membranes. Langmuir 27, 10184–10190 (2011).

    Article  CAS  Google Scholar 

  15. R.M. Dorin, D. Salomon Marques, H. Sai, U. Vainio, W.A. Phillip, K-V. Peinemann, S.P. Nunes, and U. Wiesner: Solution small-angle x-ray scattering as a screening and predictive tool in the fabrication of asymmetric block copolymer membranes. ACS Macro Lett. 1, 614–617 (2012).

    Article  CAS  Google Scholar 

  16. D. Marques, U. Vainio, N. Moreno Chaparro, V.M. Calo, A.R. Bezahd, J. Pitera, K-V. Peinemann, and S.P. Nunes: Self-assembly in casting solutions of block copolymer membranes. Soft Matter 9, 5557–5564 (2013).

    Article  CAS  Google Scholar 

  17. S.P. Nunes and K.V. Peinemann: Membrane Technology in the Chemical Industry, 2nd ed. (Wiley-VCH, Weinheim, Germany, 2006).

    Book  Google Scholar 

  18. T. Hashimoto: Dynamics in spinodal decomposition of polymer mixtures. Phase Transitions 12, 47–119 (1988).

    Article  CAS  Google Scholar 

  19. L. Zhang, K. Yu, and A. Eisenberg: Ion-induced morphological changes in crew-cut aggregates of amphiphilic block copolymers. Science 272, 1777–1779 (1996).

    Article  CAS  Google Scholar 

  20. W.A. Phillip, R. Mika Dorin, J. Werner, E.M.V. Hoek, U. Wiesner, and M. Elimelech: Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films. Nano Lett. 11, 2892–2900 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana P. Nunes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunes, S.P., Behzad, A.R. & Peinemann, KV. Self-assembled block copolymer membranes: From basic research to large-scale manufacturing. Journal of Materials Research 28, 2661–2665 (2013). https://doi.org/10.1557/jmr.2013.253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.253

Navigation