Skip to main content
Log in

Nanoindentation cracking in gallium arsenide: Part I. In situ SEM nanoindentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The nanoindentation fracture behavior of gallium arsenide (GaAs) is examined from two perspectives in two parent papers. The first paper (part I) focuses on in situ nanoindentation within a scanning electron microscope (SEM) and on fractographic observations of cleaved cross-sections of indented regions to investigate the crack field under various indenter geometries. In the second parent paper (part II), cathodoluminescence and transmission electron microscopy are used to investigate the relationship between dislocation and crack fields. The combination of instrumented in situ scanning electron microscopy nanoindentations and cleavage cross-sectioning allows us to establish a detailed map of cracking in the indented region and cracking kinetics for conical and wedge indenter shapes. For wedge nanoindentations, the evolution of the half-penny crack size with the indentation load is interpreted using a simple linear elastic fracture model based on weight functions. Fracture toughness estimates obtained by this technique fall within the range of usual values quoted for GaAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.
FIG. 14.
FIG. 15.
FIG. 16.
FIG. 17.
FIG. 18.
FIG. 19.
TABLE I.

Similar content being viewed by others

References

  1. K. Wasmer, C. Pouvreau, J-M. Breguet, J. Michler, D. Schulz, and J. Giovanola: Nano-indentation cracking in gallium arsenide: Part II: TEM investigation. J. Mater. Res. 28(20), 2799–2809 (2013). DOI: 10.1557/jmr.2013.275

    Article  Google Scholar 

  2. D. Scannell and D. Smith: Scribing Compound Semiconductors: An Application Primer, ed. Karl Suss, Suss Report, 1987.

  3. J.W. Ure: Application of Scribing to Optoelectronic Devices, ed. Karl Suss, Suss Report, 1988.

  4. Loomis Industries: A Fresh Perspective on Scribing and Breaking Applied to Semiconductor Wafer Processing, (2006). www.loomisinc.com.

    Google Scholar 

  5. K. Wasmer, C. Ballif, R. Gassilloud, C. Pouvreau, R. Rabe, J. Michler, J.M. Breguet, J-M. Solletti, A. Karimi, and D. Schulz: Aspects of cleavage fracture of brittle semiconductors from the nanometre to the centimetre scale. Adv. Eng. Mater. 7, 309 (2005).

    Article  CAS  Google Scholar 

  6. K. Wasmer, C. Ballif, C. Pouvreau, D. Schulz, and J. Michler: Dicing of gallium-arsenide high performance laser diodes for industrial applications: Part I: Scratching operation. J. Mater. Process. Technol. 198, 114 (2008).

    Article  Google Scholar 

  7. K. Wasmer, C. Ballif, C. Pouvreau, D. Schulz, and J. Michler: Dicing of gallium-arsenide high performance laser diodes for industrial applications: Part II: Cleavage operation. J. Mater. Process. Technol. 198, 105 (2008).

    Article  Google Scholar 

  8. C. Pouvreau, K. Wasmer, J. Giovanola, J-M. Breguet, J. Michler, and A. Karimi: In-situ scanning electron microscope indentation of gallium arsenide. In 16th European Conference on Fracture (ECF16), Proceedings of the 16th European Conference of Fracture, Alexandroupolis, Greece, July 3-7, 2006, ed. E.E. Gdoutos. (Springer, New York, NY, 2006).

    Google Scholar 

  9. R. Rabe, J-M. Breguet, P. Schwaller, S. Stauss, F-J. Haug, J. Patscheider, and J. Michler: Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope. Thin Solid Films 469–470, 206 (2004).

    Article  Google Scholar 

  10. B. Lawn: Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, Cambridge, UK, 1997).

    Google Scholar 

  11. R. Rabe: Compact test platform for in-situ nano-indentation and scratching inside a scanning electron microscope. Ph.D. Thesis, Ecole Polytechnique Fédéral de Lausanne (EPFL), 2006. http://infoscience.epfl.ch/record/86070 Library of EPFL.

    Google Scholar 

  12. A. Lefebvre, Y. Androussi, and G. Vanderschaeve: A TEM investigation of the dislocation rosettes around a Vickers indentation in GaAs. Phys. Status Solidi A 99, 405 (1987).

    Article  CAS  Google Scholar 

  13. E. Le Bourhis, L. Largeau, G. Patriarche, and J.P. Riviere: Deformations of (011) GaAs under concentrated load. J. Mater. Sci. Lett. 20, 1361 (2001).

    Article  Google Scholar 

  14. H.S. Leipner, D. Lorenz, A. Zeckzer, H. Lei, and P. Grau: Nanoindentation pop-in effect in semiconductors. Physica B 308–310, 446 (2001).

    Article  Google Scholar 

  15. E. Le Bourhis and G. Patriarche: Plastic deformation of III-V semiconductors under concentrated load. Prog. Cryst. Growth Charact. Mater. 47, 1 (2003).

    Article  Google Scholar 

  16. K. Wasmer, M. Parlinska-Wojtan, R. Gassilloud, C. Pouvreau, J. Tharian, and J. Michler: Plastic deformation modes of gallium-arsenide in nanoindentation and nanoscratching. Appl. Phys. Lett. 90, 031902 (2007).

    Article  Google Scholar 

  17. M. Parlinska-Wojtan, K. Wasmer, J. Tharian, and J. Michler: Microstructural comparison of material damage in GaAs caused by Berkovich and wedge nanoindentation and nanoscratching. Scr. Mater. 59, 364 (2008).

    Article  CAS  Google Scholar 

  18. R.F. Cook and G.M. Pharr: Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73, 787 (1990).

    Article  CAS  Google Scholar 

  19. K. Wasmer, M. Parlinska-Wojtan, S. Graça, and J. Michler: Sequence of deformation and cracking behaviours of gallium-arsenide during nano-scratching. Mater. Chem. Phys. 138, 38 (2013). https://doi.org/10.1016/j.matchemphys.2012.10.033.

    Article  CAS  Google Scholar 

  20. T. Fett and D. Munz: Problems in fracture mechanics of indentations cracks. Forschungszentrum Karlsruhe, Institut für Materialforschung, FZKA 6907, (2003). http://bibliothek.fzk.de/zb/berichte/FZKA6907.pdf.

    Google Scholar 

  21. T. Fett and D. Munz: Stress Intensity Factors and Weight Functions, 1st ed. (KIT Press, Karlsruhe Institute of Technology, Karlsruhe, Germany, 1997).

    Google Scholar 

  22. G. Michot and A. George: Fracture toughness of pure and in doped GaAs. Scr. Metall. 22, 1043 (1988).

    Article  CAS  Google Scholar 

  23. K. Yasutake, Y. Konishi, K. Adachi, K. Yoshii, M. Umeno, and H. Kawabe: Fracture of GaAs wafers. Jpn. J. Appl. Phys. 27, 2238 (1988).

    Article  CAS  Google Scholar 

  24. C.P. Chen and C.J. Morrissey: Evaluation of GaAs fracture mechanics. Nasa Technol. Brief 11, 1 (1987).

    Google Scholar 

  25. R.W. Margevicius and P. Gumbsch: Influence of crack propagation direction on 110 fracture toughness of gallium arsenide. Philos. Mag. A 78, 567 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilian Wasmer.

Additional information

Address all correspondence to this author.

Both authors have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasmer, K., Pouvreau, C., Breguet, JM. et al. Nanoindentation cracking in gallium arsenide: Part I. In situ SEM nanoindentation. Journal of Materials Research 28, 2785–2798 (2013). https://doi.org/10.1557/jmr.2013.252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.252

Navigation