Skip to main content
Log in

Nanostructural characterization of mesoporous hematite thin film photoanode used for water splitting

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

By combining high-resolution transmission electron microscopy and scanning transmission electron microscopy with analytical capability, we investigated the nanostructure of a textured hematite photoanode with columnar grains obtained by the colloidal deposition of magnetite nanocrystals. This initial report describes in detail the structure and chemistry of the α-Fe2O3/SnO2:F interface by identifying semicoherent and incoherent interfaces as well as a localized interdiffusion layer of Sn and Fe at the interface (∼100 nm in length). Our study indicates that unintentional doping by tin at a high sintering temperature is not significant in enhancing hematite photoanode performance for water oxidation. The correlation of nanoscale morphology with photoelectrochemical characterization facilitated the identification of the beneficial effect of a preferential growth direction of a hematite film along the [110] axis for water-splitting efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. M.P. Dare-Edwards, J.B. Goodenough, A. Hamnett, and P.R. Trevellick: Electrochemistry and photoelectrochemistry of iron(III) oxide. J. Chem. Soc., Faraday Trans. 79, 2027–2041 (1983).

    Article  CAS  Google Scholar 

  2. K. Itoh and J.O. Bockris: Stacked thin-film photoelectrode using thin-film photoelectrochemistry–iron-oxide. J. Electrochem. Soc. 131, 1266 (1984).

    Article  CAS  Google Scholar 

  3. U. Bjorkstbn, J. Moser, and M. Gratzel: Photoelectrochemical studies on nanocrystalline hematite films. Chem. Mater. 6, 858–863 (1994).

    Article  Google Scholar 

  4. A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, and J.A. Glasscock: Efficiency of solar water splitting using semiconductor electrodes. Int. J.Hydrogen Energy 31, 1999–2017 (2006).

    Article  CAS  Google Scholar 

  5. J. Kennedy and K.J. Frese: Photooxidation of water at α-Fe2O3 electrodes. Electrochem. Soc. 125, 709 (1978).

    Article  CAS  Google Scholar 

  6. F.J. Morin: Electrical properties of alpha-Fe2O3 and alpha Fe2O3 containing titanium. Phys. Rev. 83, 1005 (1951).

    Article  CAS  Google Scholar 

  7. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  8. K. Sivula, F. Le Formal, and M. Grätzel: Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. Chem. Sus. Chem. 4, 432–449 (2011).

    Article  CAS  Google Scholar 

  9. S.D. Tilley, M. Cornuz, K. Sivula, and M. Gratzel: Light-inducedwater splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 1–5 (2010).

    Article  Google Scholar 

  10. Y. Lin, S. Zhou, S.W. Sheehan, and D. Wang: Nanonet-based hematite heteronanostructures for efficient solar water splitting. J. Am. Chem. Soc. 133(8), 2398–2401 (2011).

    Article  CAS  Google Scholar 

  11. F. Le Formal, M. Gratzel, and K. Sivula: Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 20, 1099–1107 (2010).

    Article  CAS  Google Scholar 

  12. B.M. Klahr, A.B.F. Martinson, and T.W. Hamann: Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 27(1), 461–468 (2011).

    Article  CAS  Google Scholar 

  13. M.A. Lukowski and S. Jin: Improved synthesis and electrical properties of Si-doped α-Fe2O3 nanowires. J. Phys. Chem. C 115, 12388–12395 (2011).

    Article  CAS  Google Scholar 

  14. J.S. Jang, J. Lee, H. Ye, F.R.F. Fan, and A.J. Bard: Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical mcroscopy and investigation of their photoelectrochemical properties. J. Phys. Chem. C 113(16), 679–6724 (2009).

    Article  Google Scholar 

  15. V.R. Satsangi, S. Kumari, A.P. Singh, R. Shrivastav, and S. Dass: Iron doped TiO2 for photoelectrochemical generation of hydrogen. Int. J. Hydrogen Energy 33(1), 312–318 (2008).

    Article  CAS  Google Scholar 

  16. R. Franking, L. Li, M.A. Lukowski, F. Meng, Y. Tan, R.J. Hamers, and S. Jin: Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation. Energy Environ. Sci. 6, 500–512 (2013).

    Article  CAS  Google Scholar 

  17. Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, and Y. Li: Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11(5), 2119–2125 (2011).

    Article  CAS  Google Scholar 

  18. K. Sivula, R. Zboril, L. Formal, R.F. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Gratzel: Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 132, 7436–7444 (2010).

    Article  CAS  Google Scholar 

  19. N. Iordanova, M. Dupuis, and K.M. Rosso: Charge transport in metal oxides: A theoretical study of hematite alpha-Fe2O3. J. Chem. Phys. 122, 144305 (2005).

    Article  CAS  Google Scholar 

  20. T. Nakau: Electrical conductivity of alfa-Fe2O3. J. Phys. Soc. Jpn. 15, 727 (1960).

    Article  CAS  Google Scholar 

  21. J.P.D. Benjelloun, J.P. Bonnet, J.C. Doumerc, M. Launay, P. Onillon, and P. Hagenmuller: Anysotropic electronic properties of the iron oxide (α-Fe2O3). Mater. Chem. Phys. 10, 503 (1984).

    Article  CAS  Google Scholar 

  22. S.V. Yanina and K.M. Rosso: Linked reactivity at mineral-water interfaces through bulk crystal conduction. Science 320, 218–222 (2008).

    Article  CAS  Google Scholar 

  23. A. Kay, I. Cesar, and M. Gratzel: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714 (2006).

    Article  CAS  Google Scholar 

  24. I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. Gratzel: Influence of feature size, film thickness and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772–782 (2009).

    Article  CAS  Google Scholar 

  25. A.S. Campbell, U. Schwertmann, H. Stanjek, J. Friedl, A. Kyek, and P.A. Campbell: Si incorporation into hematite by hear- ing Si- ferrihydrite. Langmuir 18, 7804–7809 (2002).

    Article  CAS  Google Scholar 

  26. N.T. Hahn, H. Ye, D.W. Flaherty, A.J. Bard, and C.B. Mullins: Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation. ACS Nano 4, 1977–1986 (2010).

    Article  CAS  Google Scholar 

  27. L. Vayssieres, N. Beermann, S.E. Lindquist, and A. Hagfeldt: Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron(III) oxides. Chem. Mater. 13, 233 (2001).

    Article  CAS  Google Scholar 

  28. R.H. Goncalves, B.H.R. Lima, and E.R. Leite: Magnetite colloidal nanocrystals: A facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. J. Am. Chem. Soc. 133, 6012–6019 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of FAPESP (projects 98/14324-0), FINEP, CNPq (INCT program), and CAPES (all Brazilian agencies) is gratefully acknowledged. We acknowledge Dr. David M. Donnet, Fernando Mendoza, and Nanoport-FEI Company for FIB sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson R. Leite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncalves, R.H., Leite, E.R. Nanostructural characterization of mesoporous hematite thin film photoanode used for water splitting. Journal of Materials Research 29, 47–54 (2014). https://doi.org/10.1557/jmr.2013.249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.249

Navigation