Skip to main content
Log in

Mechanisms of Ti nanocluster formation by inert gas condensation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanisms involved in the formation of titanium (Ti) nanoclusters produced by sputtering and inert gas condensation were investigated experimentally and numerically. Ti nanoclusters were generated inside an ultrahigh vacuum compatible system under different source parameters, i.e., inert gas flow rate (fAr), length of the aggregation region (L), and sputtering discharge power (P). Nanocluster size and yield were measured using a quadrupole mass filter (QMF). The variation of the above source parameters enabled fine-tuning of the nanocluster size and yield. Herein, Ti nanoclusters were produced within the size range 3.0-10.0 nm. The combination between the nanocluster size and yield as a function of source parameters enabled understanding Ti nanocluster formation mechanisms, i.e., three-body and two-body collisions. The results show that two-body collisions dominate nanocluster production at low fAr while the three-body collisions dominate at high fAr. In addition, nanocluster size increases as L increases due to the increase in nanocluster nucleation and growth times. The maximum nanocluster yield was obtained at fAr that maximize the probability of three-body and two-body collisions. Nanoclusters could be produced within an optimum range of the sputtering discharge power wherein the nanocluster size and yield increase with increasing the discharge power as a result of increasing the amount of sputtered material. The experimental results were compared with a theoretical model of nanocluster formation via three-body collision. Detailed understanding of the evolution of size and yield of Ti (and Ti-oxide) nanoclusters is essential for producing nanoclusters that can be utilized for environmental applications such as conversion of carbon dioxide and water vapor into hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
TABLE 1

Similar content being viewed by others

References

  1. S. Yamamuro, K. Sumiyama, W. Sakurai, and K. Suzuki: Cr cluster deposition by plasma-gas-condensation method. Supramol. Sci. 5, 239 (1998).

    Article  CAS  Google Scholar 

  2. A.I. Ayesh, N. Qamhieh, H. Ghamlouche, S. Thaker, and M. EL-Shaer: Fabrication of size-selected Pd nanoclusters using a magnetron plasma sputtering source, J. Appl. Phys. 107, 034317 (2010).

    Article  Google Scholar 

  3. A.I. Ayesh: Electronic transport in Pd nanocluster devices, Appl. Phys. Lett. 98, 133108 (2011).

    Article  Google Scholar 

  4. H. Haberland, M. Karrais, M. Mall, and Y. Thurner: Thin films from energetic cluster impact: A feasibility study, J. Vac. Sci. Technol., A 10, 3266 (1992).

    Article  CAS  Google Scholar 

  5. J.C. Sánchez-López and A. Fernández: The gas-phase condensation method for the preparation of quantum-sized ZnS nanoparticles, Thin Solid Films 317, 497–499 (1998).

    Article  Google Scholar 

  6. K.E.J. Lehtinen and M. Kulmala: A model for particle formation and growth in the atmosphere with molecular resolution in size, Atmos. Chem. Phys. 3, 251–257 (2003).

    Article  CAS  Google Scholar 

  7. A. Simchi, R. Ahmadi, S.M. Seyed Reihani, and A. Mahdavi: Kinetics and mechanisms of nanoparticle formation and growth in vapor phase condensation process, Mater. Des. 28, 850–856 (2007).

    Article  CAS  Google Scholar 

  8. S. Ikezawa, H. Homyara, T. Kubota, R. Suzuki, S. Koh, F. Mutuga, T. Yoshioka, A. Nishiwaki, Y. Ninomiya, M. Takahashi, K. Baba, K. Kida, T. Hara, and T. Famakinwa: Applications of TiO2 film for environmental purification deposited by controlled electron beam-excited plasma, Thin Solid Films 386, 173–176 (2001).

    Article  CAS  Google Scholar 

  9. J. Liqiang, S. Xiaojun, C. Weimin, X. Zili, D. Yaoguo, and F. Honggang: The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity, J. Phys. Chem. Solids 64, 615–623 (2003).

    Article  Google Scholar 

  10. A.I. Ayesh, S. Thaker, N. Qamhieh, and H. Ghamlouche: Size-controlled Pd nanocluster grown by plasma gas-condensation method, J. Nanopart. Res. 13, 1125 (2011).

    Article  CAS  Google Scholar 

  11. A.I. Ayesh, N. Qamhieh, S.T. Mahmoud, and H. Alawadhi: Fabrication of size-selected bimetallic nanoclusters using magnetron sputtering, J. Mater. Res. 27(18), 2441–2446 (2012).

    Article  CAS  Google Scholar 

  12. A.N. Banerjee, R. Krishna, and B. Das: Size controlled deposition of Cu and Si nano-clusters by an ultra-high vacuum sputtering gas aggregation technique. Appl. Phys. A 90, 299 (2008).

    Article  CAS  Google Scholar 

  13. H. Haberland: Nanoclusters of Atoms and Molecules (Springer, Berlin, 1995).

    Google Scholar 

  14. T. Hihara and K. Sumiyama: Formation and size control of a Ni cluster by plasma gas condensation. J. Appl. Phys. 84, 5270 (1998).

    Article  CAS  Google Scholar 

  15. S. Pratontep, S.J. Carroll, C. Xirouchaki, M. Streun, and R.E. Palmer: Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation, Rev. Sci. Instrum. 76, 045103 (2005).

    Article  Google Scholar 

  16. A.A. Lushnikov and M. Kulmala: Dimers in nucleating vapors, Phys. Rev. E 58, 3157 (1998).

    Article  CAS  Google Scholar 

  17. K.E.J. Lehtinen, U. Backman, J.K. Jokiniemi, and M. Kulmala: Three-body collisions as a particle formation mechanism in silver nanoparticle synthesis, J. Colloid Interface Sci. 274, 526–530 (2004).

    Article  CAS  Google Scholar 

  18. N.A. Fuchs and A.G. Sutugin: High dispersed aerosols, in Topics in Current Aerosol Research, Part 2, edited by G.M. Hidy and J.R. Brock (Pergamon, New York, 1971).

    Google Scholar 

  19. J.K. Jokiniemi, M. Lazaridis, K.E.J. Lehtinen, and E.I. Kauppinen: Numerical simulation of vapour-aerosol dynamics in combustion processes, J. Aerosol Sci. 25, 429 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Emirates Foundation (United Arab Emirates) under Grant Ref. No. 2011/177 and United Arab Emirates University under grant code G00000840. The authors would like to thank Mr. S. Tariq at FMHS (United Arab Emirates University) for the TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad I. Ayesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayesh, A.I., Ahmed, H.A., Awwad, F. et al. Mechanisms of Ti nanocluster formation by inert gas condensation. Journal of Materials Research 28, 2622–2628 (2013). https://doi.org/10.1557/jmr.2013.246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.246

Navigation