Abstract
We present a simple and quick procedure for the one-pot synthesis of manganese oxides under a basic solvothermal condition in the presence of cationic surfactants acting as the template in a 2-butanol/water solution. Three-dimensional spinel-type MnO2 microspheres composed of small nanoparticles have been fabricated for the first time using our method. Their corresponding electrochemical performances in the applications of supercapacitor electrodes exhibit a good specific capacitance (SC) value of ∼190 F/g at 0.5 A/g and excellent SC retention and Coulombic efficiency of ∼100% and ∼95% after 1000 charge/discharge cycles at 1 A/g, respectively. This suggests its potential applications in energy storage devices. Further, we demonstrate that this solvothermal technique enables the morphological tuning of manganese oxides in various forms such as schists, rods, fibers, and nanoparticles. This work describes a rapid and low-cost technique to fabricate novel architectures of manganese oxides having the desired crystal phase, which will highly benefit various supercapacitor applications.
Similar content being viewed by others
References
F. Kim, S. Connor, H. Song, T. Kuykendall, and P.D. Yang: Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 3673 (2004).
Z.W. Chen, Z. Jiao, D.Y. Pan, Z. Li, M.H. Wu, C.H. Shek, C.M.L. Wu, and J.K.L. Lai: Recent advances in manganese oxide nanocrystals: Fabrication, characterization, and microstructure. Chem. Rev. 112, 3833 (2012).
J.E. Millstone, W. Wei, M.R. Jones, H.J. Yoo, and C.A. Mirkin: Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett. 8, 2526 (2008).
W.Y. Ko, W.H. Chen, S.D. Tzeng, S. Gwo, and K.J. Lin: Synthesis of pyramidal copper nanoparticles on gold substrate. Chem. Mater. 18, 6097 (2006).
W.Y. Ko, W.H. Chen, C.Y. Cheng, and K.J. Lin: Architectural growth of Cu nanoparticles through electrodeposition. Nanoscale Res. Lett. 4, 1481 (2009).
J.Z. Chen, Y.C. Yen, W.Y. Ko, C.Y. Cheng, and K.J. Lin: The role of the fabrication of anatase-TiO2 chain-networked photoanodes. Adv. Mater. 23, 3970 (2011).
J.Z. Chen, W.Y. Ko, Y.C. Yen, P.H. Chen, and K.J. Lin: Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties. ACS Nano 6, 6633 (2012).
Y.G. Sun and Y.N. Xia: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002).
H. Lee, S.E. Habas, S. Kweskin, D. Butcher, G.A. Somorjai, and P.D. Yang: Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 45, 7824 (2006).
G.H. Qiu, H. Huang, S. Dharmarathna, E. Benbow, L. Stafford, and S.L. Suib: Hydrothermal synthesis of manganese oxide nanomaterials and their catalytic and electrochemical properties. Chem. Mater. 23, 3892 (2011).
S.L. Brock, M. Sanabria, J. Nair, S.L. Suib, and T. Ressler: Tetraalkylammonium manganese oxide gels: Preparation, structure, and ion-exchange properties. J. Phys. Chem. B 105, 5404 (2001).
N. Pinna, M. Willinger, K. Weiss, J. Urban, and R. Schlogl: Local structure of nanoscopic materials: V2O5 nanorods and nanowires. Nano Lett. 3, 1131 (2003).
G.J.D. Soler-illia, C. Sanchez, B. Lebeau, and J. Patarin: Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093 (2002).
T.D. Nguyen and T.O. Do: Solvo-hydrothermal approach for the shape-selective synthesis of vanadium oxide nanocrystals and their characterization. Langmuir 25, 5322 (2009).
X.K. Huang, D.P. Lv, H.J. Yue, A. Attia, and Y. Yang: Controllable synthesis of alpha- and beta-MnO(2): Cationic effect on hydrothermal crystallization. Nanotechnology 19, 225606 (2008).
L.C. Zhang, Z.H. Liu, H. Lv, X.H. Tang, and K. Ooi: Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J. Phys. Chem. C 111, 8418 (2007).
J.H. Kim, T. Ayalasomayajula, V. Gona, and D. Choi: Fabrication and electrochemical characterization of a vertical array of MnO2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries. J. Power Sources 183, 366 (2008).
J.W. Lee, A.S. Hall, J-D. Kim, and T.E. Mallouk: A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24, 1158 (2012).
W.F. Wei, X.W. Cui, W.X. Chen, and D.G. Ivey: Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697 (2011).
O. Ghodbane, J.L. Pascal, B. Fraisse, and F. Favier: Structural in situ study of the thermal behavior of manganese dioxide materials: Toward selected electrode materials for supercapacitors. ACS Appl. Mater. Interfaces 2, 3493 (2010).
J. Zhu, W. Shi, N. Xiao, X. Rui, H. Tan, X. Lu, H.H. Hng, J. Ma, and Q. Yan: Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors. ACS Appl. Mater. Interfaces 4, 2769 (2012).
O. Ghodbane, J-L. Pascal, and F. Favier: Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 1, 1130 (2009).
Y. Wang, Q.S. Zhu, and L. Tao: Fabrication and growth mechanism of hierarchical porous Fe3O4 hollow sub-microspheres and their magnetic properties. CrystEngComm 13, 4652 (2011).
H. Xia, J.K. Feng, H.L. Wang, M.O. Lai, and L. Lu: MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. J. Power Sources 195, 4410 (2010).
D. Portehault, S. Cassaignon, E. Baudrin, and J.P. Jolivet: Structural and morphological control of manganese oxide nanoparticles upon soft aqueous precipitation through MnO4-/Mn2+ reaction. J. Mater. Chem. 19, 2407 (2009).
K. Kai, Y. Kobayashi, Y. Yamada, K. Miyazaki, T. Abe, Y. Uchimoto, and H. Kageyama: Electrochemical characterization of single-layer MnO2 nanosheets as a high-capacitance pseudocapacitor electrode. J. Mater. Chem. 22, 14691 (2012).
S.L. Brock, M. Sanabria, S.L. Suib, V. Urban, P. Thiyagarajan, and D.I. Potter: Particle size control and self-assembly processes in novel colloids of nanocrystalline manganese oxide. J. Phys. Chem. B 103, 7416 (1999).
M.A. Camblor, A. Corma, and S. Valencia: Characterization of nanocrystalline zeolite beta. Microporous Mesoporous Mater. 25, 59 (1998).
S. Bach, M. Henry, N. Baffier, and J. Livage: Sol-gel synthesis of manganese oxides. J. Solid State Chem. 88, 325 (1990).
T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier, and D. Belanger: Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 153, A2171 (2006).
S. Devaraj and N. Munichandraiah: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112, 4406 (2008).
Y. Xue, Y. Chen, M-L. Zhang, and Y-D. Yan: A new asymmetric supercapacitor based on lambda-MnO2 and activated carbon electrodes. Mater. Lett. 62, 3884 (2008).
Acknowledgments
We gratefully acknowledge the financial support from National Science Council of Taiwan (Grant Nos. NSC-101-2113-M-005-014-MY3 and NSC 101-2628-M-007-006). We also appreciate Dr. Lih J. Chen at National Tsing Hua University, Taiwan, for providing technical assistance in HRTEM measurements.
Author information
Authors and Affiliations
Corresponding authors
Supplementary Material
Supplementary Material
Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting u]http://journals.cambridge.org/jmr.
Rights and permissions
About this article
Cite this article
Ko, WY., Chen, LJ., Chen, YH. et al. Solvothermal synthesis of shape-controlled manganese oxide materials and their electrochemical capacitive performances. Journal of Materials Research 29, 107–114 (2014). https://doi.org/10.1557/jmr.2013.238
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2013.238