Abstract
Fe3O4@TiO2 magnetic photocatalysts containing sub-10-nm TiO2 nanocrystals with two different morphologies (nanoparticles and nanorods) were prepared via a facile straight dipping process. A series of comparative experiments on organic pollutant degradation demonstrated that Fe3O4@TiO2 nanorods show superior activity and faster degradation rates than Fe3O4@TiO2 nanoparticles. Combined with the study of high resolution transmission electron microscopy, crystal models are given to analyze the morphology effect of TiO2 nanocrystals on their photocatalytic activities for organic degradation. TiO2 nanorods with more (100) crystal planes, which have relatively higher surface energy and relative higher density of Ti atoms, showed a higher activity than that of TiO2 nanoparticles. Furthermore, both Fe3O4@TiO2 nanorods and Fe3O4@TiO2 nanoparticles show better photocatalytic activities than several comparison Fe3O4@TiO2 samples due to the strong size effect arising from the tiny size of TiO2 nanorods and nanoparticles. These magnetic photocatalysts also show advantages in separation and recycling utilization.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
M.A. Fox and M.T. Dulay: Heterogeneous photocatalysis. Chem. Rev. 93, 341 (1993).
A. Heller: Chemistry and applications of photocatalytic oxidation of thin organic films. Acc. Chem. Res. 28, 503 (1995).
A.L. Linsebigler, G. Lu, and J.T. Yates Jr.: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).
W. Fu, H. Yang, M. Li, N. Yang, and G. Zou: Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst. Mater. Lett. 59, 3530 (2005).
S. Watson, D. Beydoun, and R. Amal: Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core. J. Photochem. Photobiol., A 148, 303 (2002).
M.W. Xu, S.J. Bao, and X.G. Zhang: Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition. Mater. Lett. 59, 2194 (2005).
M. Anpo, T. Shima, S. Kodama, and Y. Kubokawa: Photocatalytic hydrogenation of propyne with water on small-particle titania: Size quantization effects and reaction intermediates. J. Phys. Chem. 91, 4305 (1987).
C. Kormann, D.W. Bahnemann, and M.R. Hoffmann: Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem. 92, 5196 (1988).
C.T. Dinh, T.D. Nguyen, F. Kleitz, and T.O. Do: Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano 3(11), 3737 (2009).
J. Li, Y. Yu, Q. Chen, and D. Xu: Controllable synthesis of TiO2 single crystals with tunable shapes using ammonium-exchanged titanate nanowires as precursors. Cryst. Growth Des. 10, 2111 (2010).
Y. Li, M. Zhang, M. Guo, and X. Wang: Preparation and properties of a nano TiO2/Fe3O4 composite superparamagnetic photocatalyst. Rare Met. 28, 423 (2009).
S. Xuan, W. Jiang, X. Gong, Y. Hu, and Z. Chen: Magnetically separable Fe3O4/TiO2 hollow spheres: Fabrication and photocatalytic activity. J. Phys. Chem. 113, 553 (2008).
M. Agrawal, S. Gupta, A. Pich, N.E. Zafeiropoulos, J. Rubio-Retama, D. Jehnichen, and M. Stamm: Template-assisted fabrication of magnetically responsive hollow titania capsules. Langmuir 26, 17649 (2010).
W.F. Ma, Y. Zhang, L.L. Li, L.J. You, P. Zhang, Y.T. Zhang, J.M. Li, M. Yu, J. Guo, and H.J. Lu: Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides. ACS Nano 6, 3179 (2012).
A. Yan, X. Liu, G. Qiu, H. Wu, R. Yi, N. Zhang, and J. Xu: Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles. J. Alloys Compd. 458, 487 (2008).
X.L. Li, Q. Peng, J.X. Yi, X. Wang, and Y. Li: Near monodisperse TiO2 nanoparticles and nanorods. Chem. Eur. J. 12, 2383 (2005).
H. Al-Ekabi and N. Serpone: Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix. J. Phys. Chem. 92, 5726 (1988).
W.H. Leng, H. Liu, S.A. Cheng, J.Q. Zhang, and C.N. Cao: Kinetics of photocatalytic degradation of aniline in water over TiO2 supported on porous nickel. J. Photochem. Photobiol., A 131, 125 (2000).
X. Domènech and J. Peral: Kinetics of the photocatalytic oxidation of N (III) and S (IV) on different semiconductor oxides. Chemosphere 38, 1265 (1999).
N. Laoufi, D. Tassalit, and F. Bentahar: The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor. GLOBAL NEST J 3, 10 (2008).
H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, and G.Q. Lu: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature. 453, 638 (2008).
R.L. Penn and J.F. Banfield: Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim. Cosmochim. Acta 63, 1549 (1999).
Y. Jun, M.F. Casula, J.H. Sim, S.Y. Kim, J. Cheon, and A.P. Alivisatos: Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J. Am. Chem. Soc. 125, 15981 (2003).
A. Chemseddine and T. Moritz: Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem. 2, 235 (1999).
F. De Angelis, G. Vitillaro, L. Kavan, M.K. Nazeeruddin, and M. Grätzel: Modeling ruthenium dye sensitized TiO2 surfaces exposing the (001) or (101) faces: A first principles investigation. J. Phys. Chem. C 116, 18124 (2012).
S. Anandan, P. Sathish Kumar, N. Pugazhenthiran, J. Madhavan, and P. Maruthamuthu: Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88. Sol. Energy Mater. Sol. Cells 92, 929 (2008).
M. Harir, A. Gaspar, B. Kanawati, A. Fekete, M. Frommberger, D. Martens, A. Kettrup, M. El Azzouzi, and P. Schmitt-Kopplin: Photocatalytic reactions of imazamox at TiO2, H2O2 and TiO2/H2O2 in water interfaces: Kinetic and photoproducts study. Appl. Catal., B 84, 524 (2008).
M. Lazzeri, A. Vittadini, and A. Selloni: Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B: Condens. Matter 63, 155409 (2001).
U. Diebold: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).
Acknowledgments
This work was financially supported by NSFC (Grant Nos. 21001015 and 21121064), RFDP (Grant No. 20100010120003), and the State Key Project of Fundamental Research for Nanoscience and Nanotechnology (Grant No. 2011CB932402).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, H., He, Y. & Liang, X. Magnetic photocatalysts containing TiO2 nanocrystals: Morphology effect on photocatalytic activity. Journal of Materials Research 29, 98–106 (2014). https://doi.org/10.1557/jmr.2013.233
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2013.233