Skip to main content
Log in

Magnetic photocatalysts containing TiO2 nanocrystals: Morphology effect on photocatalytic activity

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fe3O4@TiO2 magnetic photocatalysts containing sub-10-nm TiO2 nanocrystals with two different morphologies (nanoparticles and nanorods) were prepared via a facile straight dipping process. A series of comparative experiments on organic pollutant degradation demonstrated that Fe3O4@TiO2 nanorods show superior activity and faster degradation rates than Fe3O4@TiO2 nanoparticles. Combined with the study of high resolution transmission electron microscopy, crystal models are given to analyze the morphology effect of TiO2 nanocrystals on their photocatalytic activities for organic degradation. TiO2 nanorods with more (100) crystal planes, which have relatively higher surface energy and relative higher density of Ti atoms, showed a higher activity than that of TiO2 nanoparticles. Furthermore, both Fe3O4@TiO2 nanorods and Fe3O4@TiO2 nanoparticles show better photocatalytic activities than several comparison Fe3O4@TiO2 samples due to the strong size effect arising from the tiny size of TiO2 nanorods and nanoparticles. These magnetic photocatalysts also show advantages in separation and recycling utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1.
FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
TABLE II.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. M.A. Fox and M.T. Dulay: Heterogeneous photocatalysis. Chem. Rev. 93, 341 (1993).

    Article  CAS  Google Scholar 

  2. A. Heller: Chemistry and applications of photocatalytic oxidation of thin organic films. Acc. Chem. Res. 28, 503 (1995).

    Article  CAS  Google Scholar 

  3. A.L. Linsebigler, G. Lu, and J.T. Yates Jr.: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).

    Article  CAS  Google Scholar 

  4. W. Fu, H. Yang, M. Li, N. Yang, and G. Zou: Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst. Mater. Lett. 59, 3530 (2005).

    Article  CAS  Google Scholar 

  5. S. Watson, D. Beydoun, and R. Amal: Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core. J. Photochem. Photobiol., A 148, 303 (2002).

    Article  CAS  Google Scholar 

  6. M.W. Xu, S.J. Bao, and X.G. Zhang: Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition. Mater. Lett. 59, 2194 (2005).

    Article  CAS  Google Scholar 

  7. M. Anpo, T. Shima, S. Kodama, and Y. Kubokawa: Photocatalytic hydrogenation of propyne with water on small-particle titania: Size quantization effects and reaction intermediates. J. Phys. Chem. 91, 4305 (1987).

    Article  CAS  Google Scholar 

  8. C. Kormann, D.W. Bahnemann, and M.R. Hoffmann: Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem. 92, 5196 (1988).

    Article  CAS  Google Scholar 

  9. C.T. Dinh, T.D. Nguyen, F. Kleitz, and T.O. Do: Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano 3(11), 3737 (2009).

    Article  CAS  Google Scholar 

  10. J. Li, Y. Yu, Q. Chen, and D. Xu: Controllable synthesis of TiO2 single crystals with tunable shapes using ammonium-exchanged titanate nanowires as precursors. Cryst. Growth Des. 10, 2111 (2010).

    Article  CAS  Google Scholar 

  11. Y. Li, M. Zhang, M. Guo, and X. Wang: Preparation and properties of a nano TiO2/Fe3O4 composite superparamagnetic photocatalyst. Rare Met. 28, 423 (2009).

    Article  CAS  Google Scholar 

  12. S. Xuan, W. Jiang, X. Gong, Y. Hu, and Z. Chen: Magnetically separable Fe3O4/TiO2 hollow spheres: Fabrication and photocatalytic activity. J. Phys. Chem. 113, 553 (2008).

    Google Scholar 

  13. M. Agrawal, S. Gupta, A. Pich, N.E. Zafeiropoulos, J. Rubio-Retama, D. Jehnichen, and M. Stamm: Template-assisted fabrication of magnetically responsive hollow titania capsules. Langmuir 26, 17649 (2010).

    Article  CAS  Google Scholar 

  14. W.F. Ma, Y. Zhang, L.L. Li, L.J. You, P. Zhang, Y.T. Zhang, J.M. Li, M. Yu, J. Guo, and H.J. Lu: Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides. ACS Nano 6, 3179 (2012).

    Article  CAS  Google Scholar 

  15. A. Yan, X. Liu, G. Qiu, H. Wu, R. Yi, N. Zhang, and J. Xu: Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles. J. Alloys Compd. 458, 487 (2008).

    Article  CAS  Google Scholar 

  16. X.L. Li, Q. Peng, J.X. Yi, X. Wang, and Y. Li: Near monodisperse TiO2 nanoparticles and nanorods. Chem. Eur. J. 12, 2383 (2005).

    Article  Google Scholar 

  17. H. Al-Ekabi and N. Serpone: Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix. J. Phys. Chem. 92, 5726 (1988).

    Article  CAS  Google Scholar 

  18. W.H. Leng, H. Liu, S.A. Cheng, J.Q. Zhang, and C.N. Cao: Kinetics of photocatalytic degradation of aniline in water over TiO2 supported on porous nickel. J. Photochem. Photobiol., A 131, 125 (2000).

    Article  Google Scholar 

  19. X. Domènech and J. Peral: Kinetics of the photocatalytic oxidation of N (III) and S (IV) on different semiconductor oxides. Chemosphere 38, 1265 (1999).

    Article  Google Scholar 

  20. N. Laoufi, D. Tassalit, and F. Bentahar: The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor. GLOBAL NEST J 3, 10 (2008).

    Google Scholar 

  21. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, and G.Q. Lu: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature. 453, 638 (2008).

    Article  CAS  Google Scholar 

  22. R.L. Penn and J.F. Banfield: Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim. Cosmochim. Acta 63, 1549 (1999).

    Article  CAS  Google Scholar 

  23. Y. Jun, M.F. Casula, J.H. Sim, S.Y. Kim, J. Cheon, and A.P. Alivisatos: Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J. Am. Chem. Soc. 125, 15981 (2003).

    Article  CAS  Google Scholar 

  24. A. Chemseddine and T. Moritz: Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem. 2, 235 (1999).

    Article  Google Scholar 

  25. F. De Angelis, G. Vitillaro, L. Kavan, M.K. Nazeeruddin, and M. Grätzel: Modeling ruthenium dye sensitized TiO2 surfaces exposing the (001) or (101) faces: A first principles investigation. J. Phys. Chem. C 116, 18124 (2012).

    Article  Google Scholar 

  26. S. Anandan, P. Sathish Kumar, N. Pugazhenthiran, J. Madhavan, and P. Maruthamuthu: Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88. Sol. Energy Mater. Sol. Cells 92, 929 (2008).

    Article  CAS  Google Scholar 

  27. M. Harir, A. Gaspar, B. Kanawati, A. Fekete, M. Frommberger, D. Martens, A. Kettrup, M. El Azzouzi, and P. Schmitt-Kopplin: Photocatalytic reactions of imazamox at TiO2, H2O2 and TiO2/H2O2 in water interfaces: Kinetic and photoproducts study. Appl. Catal., B 84, 524 (2008).

    Article  CAS  Google Scholar 

  28. M. Lazzeri, A. Vittadini, and A. Selloni: Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B: Condens. Matter 63, 155409 (2001).

    Article  Google Scholar 

  29. U. Diebold: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by NSFC (Grant Nos. 21001015 and 21121064), RFDP (Grant No. 20100010120003), and the State Key Project of Fundamental Research for Nanoscience and Nanotechnology (Grant No. 2011CB932402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., He, Y. & Liang, X. Magnetic photocatalysts containing TiO2 nanocrystals: Morphology effect on photocatalytic activity. Journal of Materials Research 29, 98–106 (2014). https://doi.org/10.1557/jmr.2013.233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.233

Navigation