Skip to main content
Log in

Insights into a selective synthesis of anatase, rutile, and brookite-type titanium dioxides by a hydrothermal treatment of titanium complexes

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Novel water-soluble titanium complexes coordinated by hydroxycarboxylic acids or amines were developed, and the hydrothermal treatment of the new complexes was carried out to elucidate the formation mechanism of the titania polymorphs including rutile, anatase, and brookite. An empirical relationship among the crystal structure of TiO2, the ligand, and the complex structure was found. Anatase, rutile, or a mixture of both was obtained by the hydrothermal treatment of the complexes coordinated by hydroxycarboxylic acids. The structure of complexes prepared using hydroxycarboxylic acids, which have one hydroxyl and one carboxylic groups, seems to be preferable for the formation of rutile. It was also found that the hydrothermal treatment of titanium complexes coordinated by amine with NAc2 structure resulted in the formation of brookite. Thus, the effect of ligand and complex structure on the crystal structure of TiO2 synthesized by the hydrothermal treatment of the complexes was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
TABLE II.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. X. Chen and S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).

    Article  CAS  Google Scholar 

  2. H. Cheng, J. Ma, Z. Zhao, and L. Qi: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7, 663 (1995).

    Article  CAS  Google Scholar 

  3. A. Chemseddine and T. Moritz: Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem. 2, 235 (1999).

    Article  Google Scholar 

  4. M. Gopal, W.J. Moberly Chan, and L.C. De Jonghe: Room temperature synthesis of crystalline metal oxides. J. Mater. Sci. 32, 6001 (1997).

    Article  CAS  Google Scholar 

  5. Y. Zheng, E. Shi, Z. Chen, W. Li, and X. Hu, Influence of solution concentration on the hydrothermal preparation of titania crystallites. J. Mater. Chem. 11, 1547 (2001).

    Article  CAS  Google Scholar 

  6. Y. Zhang, L. Wu, Q. Zeng, and J. Zhi: An approach for controllable synthesis of different-phase titanium dioxide nanocomposites with peroxotitanium complex as precursor. J. Phys. Chem. 112, 16457 (2008).

    CAS  Google Scholar 

  7. G. Li and K.A. Gray: Preparation of mixed- phase titanium dioxide nanocomposites via solvothermal processing. Chem. Mater. 19, 1143 (2007).

    Article  CAS  Google Scholar 

  8. Q. Zhang and L. Gao, Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method. Langmuir 19, 967 (2003).

    Article  CAS  Google Scholar 

  9. Y. Wang, L. Zhang, K. Deng, X. Chen, and Z. Zou: Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructure. J. Phys. Chem. C 111, 2709 (2007).

    Article  CAS  Google Scholar 

  10. A. Testino, I. Renato Bellobono, V. Buscaglia, C. Canevali, M. D’Arienzo, S. Polizzi, R. Scotti, and F. Morazzoni: Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J. Am. Chem. Soc. 129, 3564 (2007).

    Article  CAS  Google Scholar 

  11. D. Reyes-Coronado, G. Rodrígues-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam: Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile. Nanotechnology 19, 145605 (2008).

    Article  CAS  Google Scholar 

  12. S. Yin, H. Hasegawa, D. Maeda, M. Ishitsuka, and T. Sato: Synthesis of visible-light-active nanosize rutile titania photocatalyst by low temperature dissolution–reprecipitation process. J. Photochem. Photobiol., A 163, 1 (2004).

    Article  CAS  Google Scholar 

  13. M. Henry, J.P. Jolivet, and J. Livage: Aqueous chemistry of metal cations: Hydrolysis, condensation and complexation. Struct. Bond. 77, 153 (1992).

    Article  CAS  Google Scholar 

  14. Y. Gao, H. Luo, S. Mizusugi, and M. Nagai: Surfactant-free synthesis of anatase TiO2 nanorods in an aqueous peroxotitanate solution. Cryst. Growth Des. 8, 1804 (2008).

    Article  CAS  Google Scholar 

  15. S. Cassaignon, M. Koelsch, and J-P. Jolivet: From TiCl3 to TiO2 nanoparticles (anatase, brookite and rutile); thermohydrolysis and oxidation in aqueous medium. J. Phys. Chem. Solids 68, 695 (2007).

    Article  CAS  Google Scholar 

  16. J-G. Li, T. Ishigaki, and X. Sun: Anatase, brookite, and rutile nanocrystals via redox reaction under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties. J. Phys. Chem. C 111, 4969 (2007).

    Article  CAS  Google Scholar 

  17. H. Kominami, M. Kohno, and Y. Kera: Synthesis of brookite-type titanium oxide nano-crystals in organic media. J. Mater. Chem. 10, 1151 (2000).

    Article  CAS  Google Scholar 

  18. A. Potter, C. Chnèac, E. Trone, L. Mazerolles, and J-P. Jolivet: Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 on strongly acidic aqueous media. J. Mater. Chem. 11, 1116 (2001).

    Article  Google Scholar 

  19. M. Gateshki, S. Yin, Y. Ren, and V. Petkovi: Titania polymorphs by soft chemistry: Is there a common structural pattern? Chem. Mater. 19, 2512 (2007).

    Article  CAS  Google Scholar 

  20. Y. Morishima, M. Kobayashi, V. Petrykin, S. Yin, T. Sato, M. Kakihana, and K. Tomita: Hydrothermal synthesis of brookite type TiO2 photocatalysts using a water-soluble Ti-complex coordinated by ethylenediaminetetraacetic acid. J. Ceram. Soc. Jpn. 117, 320 (2009).

    Article  CAS  Google Scholar 

  21. K. Tomita, V. Petrykin, M. Kobayashi, M. Shiro, M. Yoshimura, and M. Kakihana: A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew. Chem. Int. Ed. 45, 2378 (2006).

    Article  CAS  Google Scholar 

  22. M. Kobayashi, K. Tomita, V. Petrykin, M. Yoshimura, and M. Kakihana: Direct synthesis of brookite-type titanium oxide by hydrothermal method using water-soluble titanium complexes. J. Mater. Sci. 43, 2158 (2008).

    Article  CAS  Google Scholar 

  23. D. Dambournet, I. Belharouak, J. Ma, and K. Amine: Toward high surface area TiO2 brookite with morphology control. J. Mater. Chem. 21, 3085 (2011).

    Article  CAS  Google Scholar 

  24. M. Kakihana, M. Kobayashi, K. Tomita, and V. Petrykin: Application of water-soluble titanium complexes as precursors for synthesis of titanium-containing oxides via aqueous solution processes. Bull. Chem. Soc. Jpn. 83, 1285 (2010).

    Article  CAS  Google Scholar 

  25. H. Ichinose, M. Taira, S. Furuta, and H. Katsuki: Anatase sol prepared from peroxotitanium complex aqueous solution containing niobium or vanadium. J. Am. Ceram. Soc. 86, 1605 (2003).

    Article  CAS  Google Scholar 

  26. Y. Gao, Y. Masuda, Z. Peng, T. Tonezawa, and K. Koumoto: Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution. J. Mater. Chem. 13, 608 (2003).

    Article  CAS  Google Scholar 

  27. H. Zhang and J.F. Banfield: Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B 104, 3481 (2000).

    Article  CAS  Google Scholar 

  28. M. Lazzeri, A. Vittadini, and A. Selloni: Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. 63, 155409 (2001).

    Article  Google Scholar 

  29. P.M. Oliver, G.W. Watson, E.T. Kelsey, and S.C. Parker: Atomistic simulation of the surface structure of the TiO2 polymorphs rutile and anatase. J. Mater. Chem. 7, 563 (1997).

    Article  CAS  Google Scholar 

  30. A.S. Barnard and L.A. Curtis: Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5, 1261 (2005).

    Article  CAS  Google Scholar 

  31. X. Huang and C. Pan: Large-scale synthesis of single-crystalline rutile TiO2 nanorods via a one-step solution route. J. Cryst. Growth 306, 117 (2007).

    Article  CAS  Google Scholar 

  32. N.M. Kinsinger, A. Wong, D. Li, F. Villalobos, and D. Kisailus: Nucleation and crystal growth of nanocrystalline anatase and rutile phase TiO2 from a water-soluble precursor. Cryst. Growth Des. 10, 5354 (2010).

    Article  Google Scholar 

  33. J. Livage, M. Henry, and C. Sanchez: Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18, 259 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (Grant No. 22107002) on Innovative Areas of “Fusion Materials: Creative Development of Materials and Exploration of Their Function through Molecular Control” (Grant No. 2206) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Kakihana.

Supplementary Material

Supplementary Material

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting u]http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshizawa, M., Kobayashi, M., Petrykin, V. et al. Insights into a selective synthesis of anatase, rutile, and brookite-type titanium dioxides by a hydrothermal treatment of titanium complexes. Journal of Materials Research 29, 90–97 (2014). https://doi.org/10.1557/jmr.2013.229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.229

Navigation