Skip to main content
Log in

Synthesis of nanostructured SnO and SnO2 by high-energy milling of Sn powder with stearic acid

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of stearic acid on the high-energy ball milling of tin powder have been investigated. The mean crystallite sizes, microstrain, and phase transformations were examined using different techniques like x-ray diffraction (XRD), Rietveld refinement method, and differential scanning calorimetry (DSC). After 28 h of milling, the Rietveld analysis showed the stabilization of Sn mean crystallite sizes at around 50 nm. Due to the presence of oxygen in stearic acid, the milling process gradually produced an amorphous Sn oxide phase. The DSC thermogram of the sample milled for 28 h showed two exothermic peaks separated by an endothermic peak. Based on the DSC measurements, two samples were annealed at 240 and 350 °C for 20 min. The annealing at 240 °C confirmed the presence of an amorphous phase which crystallized in nanostructured tetragonal SnO phase. The annealing at 350 °C revealed the nucleation of nanostructured tetragonal SnO2 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
TABLE I.

Similar content being viewed by others

References

  1. J.Q. Hu, X.L. Ma, N.G. Shang, Z.Y. Xie, N.B. Wong, C.S. Lee, and S.T. Lee: Large-scale rapid oxidation synthesis of SnO2 nanoribbons. J. Phys. Chem. B 106, 3823 (2002).

    Article  CAS  Google Scholar 

  2. J. Watson: The tin oxide gas sensor and its applications. Sens. Actuators, B 5, 29 (1984).

    Article  CAS  Google Scholar 

  3. M.S. Arnold, P. Avouris, Z.W. Pan, and Z.L. Wang: Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B 107, 659 (2003).

    Article  CAS  Google Scholar 

  4. Y.J. Chen, L. Nie, X.Y. Xue, Y.G. Wang, and T.H. Wang: Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Appl. Phys. Lett. 88, 083105 (2006).

    Article  Google Scholar 

  5. L.Z. Liu, X.L. Wu, J.Q. Xu, T.H. Li, J.C. Shen, and P.K. Chu: Oxygen-vacancy and depth-dependent violet double-peak photoluminescence from ultrathin cuboid SnO2 nanocrystals. Appl. Phys. Lett. 100, 121903 (2012).

    Article  Google Scholar 

  6. M.C. Roco: Nanoparticles and nanotechnology research. J. Nanopart. Res. 1, 1 (1999).

    Article  Google Scholar 

  7. O. Kucheyev, T.F. Baumann, P.A. Sterne, Y.M. Wang, T. Buuren, and A.V. Hamza: Surface electronic states in three-dimensional SnO2 nanostructures. Phys. Rev. B 72, 035404 (2005).

    Article  Google Scholar 

  8. E.R. Leite, I.T. Weber, E. Longo, and J.A. Varela: A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv. Mater. 12, 966 (2000).

    Article  Google Scholar 

  9. C. Kiliç and A. Zunger: Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett. 88, 095501 (2002).

    Article  Google Scholar 

  10. S. Brovelli, A. Chiodini, A. Lauria, F. Meinardi, and A. Paleari: Energy transfer to erbium ions from wide-band-gap SnO2 nanocrystals in silica. Phys. Rev. B 73, 073406 (2006).

    Article  Google Scholar 

  11. H. Gleiter: Materials with ultrafine microstructures: Retrospectives and perspectives. Nanostruct. Mater. 1, 1 (1992).

    Article  CAS  Google Scholar 

  12. W. Lee and S.I. Kwun: The effects of process control agents on mechanical alloying mechanisms in the Ti-Al system. J. Alloys Compd. 240, 193 (1996).

    Article  CAS  Google Scholar 

  13. H.M. Rietveld: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).

    Article  CAS  Google Scholar 

  14. C. Larson and R.B. von Dreele: GSAS Manual. Rep. Laur 86 (Los Alamos Nat. Lab., Los Alamos, 1988).

    Google Scholar 

  15. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, and P. Scardi: Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36 (1999).

    Article  CAS  Google Scholar 

  16. Inorganic Crystal Structure Database (ICSD): Gmelin-Institut für Anorganische Chemie and Fachinformationszentrum FIZ Karlsruhe, 1995.

    Google Scholar 

  17. Joint Committee on Powder Diffraction Standards: JCPDS—Powder Diffraction File Search Manual, X-ray Index Cards, 11-0065 (International Center for Diffraction Data, Philadelphia, PA, 1994).

    Google Scholar 

  18. S. Gialanella, F. Deflorian, F. Girardi, I. Lonardelli, and S. Rossi: Kinetics and microstructural aspects of the allotropic transition in tin. J. Alloys Compd. 474, 134 (2009).

    Article  CAS  Google Scholar 

  19. T. Chookajorn, H.A. Murdoch, and C.A. Schuh: Design of stable nanocrystalline alloys. Science 337, 951 (2012).

    Article  CAS  Google Scholar 

  20. C.M. Poffo, J.C. de Lima, S.M. Souza, D.M. Trichês, T.A. Grandi, and R.S. de Biasi: Structural, thermal and optical study of nanocrystalline silicon produced by ball milling. J. Raman Spectrosc. 41, 1606 (2010).

    Article  Google Scholar 

  21. C. Suryanarayana: Recent developments in mechanical alloying. Rev. Adv. Mater. Sci. 18, 203 (2008).

    CAS  Google Scholar 

  22. F. Muktepavela, M. Vasylyev, A. Czerwinski, and Z. Rogulski: Investigation of hydrogen embrittlement of Sn–Al alloy during contact with water. J. Solid State Electrochem. 7, 83 (2003).

    Article  CAS  Google Scholar 

  23. G.V. Samsonov: Handbook of the Properties of Elements, Part II, edited by G.V. Samsonov (Metallurgiya, Moscow, Russia, 1976).

  24. O.P. Rachek: X-ray diffraction study of amorphous alloys Al–Ni–Ce–Sc with using Ehrenfest’s formula. J. Non-Cryst. Solids 352, 3781 (2006).

    Article  CAS  Google Scholar 

  25. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka: Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276, 1395 (1997).

    Article  CAS  Google Scholar 

  26. Z. Strand: Glass ceramic material. Glass Sci. Technol. 8, 185 (1986).

    Google Scholar 

  27. S. Hotta, K. Matsumoto, T. Murakami, T. Narushima, and C. Ouchi: Dynamic and static restoration behaviors of pure lead and tin in the ambient temperature range. Mater. Trans., JIM 48, 2665 (2007).

    Article  CAS  Google Scholar 

  28. M. Hansen: Constitution of Binary Alloys (McGraw-Hill, New York, 1958).

    Book  Google Scholar 

  29. TAPP version 2.2, E. S. Microwave Inc., Wade Court, Hamilton, OH.

  30. F. Legendre, S. Poissonnet, and P. Bonnaillie: Synthesis of nanostructured SnO2 materials by reactive ball-milling. J. Alloys Compd. 434–435, 400 (2007).

    Article  Google Scholar 

  31. F.J. Lamelas: Formation of orthorhombic tin dioxide from mechanically milled monoxide powders. J. Appl. Phys. 96, 6195 (2004).

    Article  CAS  Google Scholar 

  32. L.M. Cukrov, T. Tsuzuki, and P.G. McCormick: SnO2 nanoparticles prepared by mechanochemical processing. Scr. Mater. 44, 1787 (2001).

    Article  CAS  Google Scholar 

  33. L. Gracia, A. Beltrán, and J. Andrés: Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study. J. Phys. Chem. B 111, 6479 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Brazilian agency CNPq. We are also indebted to Dr. P. Chaudhuri for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Menegon Trichês.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzato, L., Trichês, D.M., de Souza, S.M. et al. Synthesis of nanostructured SnO and SnO2 by high-energy milling of Sn powder with stearic acid. Journal of Materials Research 29, 84–89 (2014). https://doi.org/10.1557/jmr.2013.220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.220

Navigation