Abstract
The effects of stearic acid on the high-energy ball milling of tin powder have been investigated. The mean crystallite sizes, microstrain, and phase transformations were examined using different techniques like x-ray diffraction (XRD), Rietveld refinement method, and differential scanning calorimetry (DSC). After 28 h of milling, the Rietveld analysis showed the stabilization of Sn mean crystallite sizes at around 50 nm. Due to the presence of oxygen in stearic acid, the milling process gradually produced an amorphous Sn oxide phase. The DSC thermogram of the sample milled for 28 h showed two exothermic peaks separated by an endothermic peak. Based on the DSC measurements, two samples were annealed at 240 and 350 °C for 20 min. The annealing at 240 °C confirmed the presence of an amorphous phase which crystallized in nanostructured tetragonal SnO phase. The annealing at 350 °C revealed the nucleation of nanostructured tetragonal SnO2 phase.
Similar content being viewed by others
References
J.Q. Hu, X.L. Ma, N.G. Shang, Z.Y. Xie, N.B. Wong, C.S. Lee, and S.T. Lee: Large-scale rapid oxidation synthesis of SnO2 nanoribbons. J. Phys. Chem. B 106, 3823 (2002).
J. Watson: The tin oxide gas sensor and its applications. Sens. Actuators, B 5, 29 (1984).
M.S. Arnold, P. Avouris, Z.W. Pan, and Z.L. Wang: Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B 107, 659 (2003).
Y.J. Chen, L. Nie, X.Y. Xue, Y.G. Wang, and T.H. Wang: Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Appl. Phys. Lett. 88, 083105 (2006).
L.Z. Liu, X.L. Wu, J.Q. Xu, T.H. Li, J.C. Shen, and P.K. Chu: Oxygen-vacancy and depth-dependent violet double-peak photoluminescence from ultrathin cuboid SnO2 nanocrystals. Appl. Phys. Lett. 100, 121903 (2012).
M.C. Roco: Nanoparticles and nanotechnology research. J. Nanopart. Res. 1, 1 (1999).
O. Kucheyev, T.F. Baumann, P.A. Sterne, Y.M. Wang, T. Buuren, and A.V. Hamza: Surface electronic states in three-dimensional SnO2 nanostructures. Phys. Rev. B 72, 035404 (2005).
E.R. Leite, I.T. Weber, E. Longo, and J.A. Varela: A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv. Mater. 12, 966 (2000).
C. Kiliç and A. Zunger: Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett. 88, 095501 (2002).
S. Brovelli, A. Chiodini, A. Lauria, F. Meinardi, and A. Paleari: Energy transfer to erbium ions from wide-band-gap SnO2 nanocrystals in silica. Phys. Rev. B 73, 073406 (2006).
H. Gleiter: Materials with ultrafine microstructures: Retrospectives and perspectives. Nanostruct. Mater. 1, 1 (1992).
W. Lee and S.I. Kwun: The effects of process control agents on mechanical alloying mechanisms in the Ti-Al system. J. Alloys Compd. 240, 193 (1996).
H.M. Rietveld: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).
C. Larson and R.B. von Dreele: GSAS Manual. Rep. Laur 86 (Los Alamos Nat. Lab., Los Alamos, 1988).
L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, and P. Scardi: Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36 (1999).
Inorganic Crystal Structure Database (ICSD): Gmelin-Institut für Anorganische Chemie and Fachinformationszentrum FIZ Karlsruhe, 1995.
Joint Committee on Powder Diffraction Standards: JCPDS—Powder Diffraction File Search Manual, X-ray Index Cards, 11-0065 (International Center for Diffraction Data, Philadelphia, PA, 1994).
S. Gialanella, F. Deflorian, F. Girardi, I. Lonardelli, and S. Rossi: Kinetics and microstructural aspects of the allotropic transition in tin. J. Alloys Compd. 474, 134 (2009).
T. Chookajorn, H.A. Murdoch, and C.A. Schuh: Design of stable nanocrystalline alloys. Science 337, 951 (2012).
C.M. Poffo, J.C. de Lima, S.M. Souza, D.M. Trichês, T.A. Grandi, and R.S. de Biasi: Structural, thermal and optical study of nanocrystalline silicon produced by ball milling. J. Raman Spectrosc. 41, 1606 (2010).
C. Suryanarayana: Recent developments in mechanical alloying. Rev. Adv. Mater. Sci. 18, 203 (2008).
F. Muktepavela, M. Vasylyev, A. Czerwinski, and Z. Rogulski: Investigation of hydrogen embrittlement of Sn–Al alloy during contact with water. J. Solid State Electrochem. 7, 83 (2003).
G.V. Samsonov: Handbook of the Properties of Elements, Part II, edited by G.V. Samsonov (Metallurgiya, Moscow, Russia, 1976).
O.P. Rachek: X-ray diffraction study of amorphous alloys Al–Ni–Ce–Sc with using Ehrenfest’s formula. J. Non-Cryst. Solids 352, 3781 (2006).
Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka: Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276, 1395 (1997).
Z. Strand: Glass ceramic material. Glass Sci. Technol. 8, 185 (1986).
S. Hotta, K. Matsumoto, T. Murakami, T. Narushima, and C. Ouchi: Dynamic and static restoration behaviors of pure lead and tin in the ambient temperature range. Mater. Trans., JIM 48, 2665 (2007).
M. Hansen: Constitution of Binary Alloys (McGraw-Hill, New York, 1958).
TAPP version 2.2, E. S. Microwave Inc., Wade Court, Hamilton, OH.
F. Legendre, S. Poissonnet, and P. Bonnaillie: Synthesis of nanostructured SnO2 materials by reactive ball-milling. J. Alloys Compd. 434–435, 400 (2007).
F.J. Lamelas: Formation of orthorhombic tin dioxide from mechanically milled monoxide powders. J. Appl. Phys. 96, 6195 (2004).
L.M. Cukrov, T. Tsuzuki, and P.G. McCormick: SnO2 nanoparticles prepared by mechanochemical processing. Scr. Mater. 44, 1787 (2001).
L. Gracia, A. Beltrán, and J. Andrés: Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study. J. Phys. Chem. B 111, 6479 (2007).
Acknowledgments
This research was financially supported by the Brazilian agency CNPq. We are also indebted to Dr. P. Chaudhuri for careful reading of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Manzato, L., Trichês, D.M., de Souza, S.M. et al. Synthesis of nanostructured SnO and SnO2 by high-energy milling of Sn powder with stearic acid. Journal of Materials Research 29, 84–89 (2014). https://doi.org/10.1557/jmr.2013.220
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2013.220